Centralizers of partially hyperbolic diffeomorphisms

被引:19
作者
Burslem, L [1 ]
机构
[1] Univ Michigan, Ann Arbor, MI 48109 USA
关键词
D O I
10.1017/S0143385703000191
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It has been conjectured that a generic diffeomorphism on a compact manifold will have trivial centralizer. In this paper we show that the conjecture is true within certain classes of partially hyperbolic diffeomorphisms.
引用
收藏
页码:55 / 87
页数:33
相关论文
共 20 条
[1]   DIFFEOMORPHISMS WITH DISCRETE CENTRALIZER [J].
ANDERSON, B .
TOPOLOGY, 1976, 15 (02) :143-147
[2]  
[Anonymous], DISCRETE CONTIN DYNA
[3]  
Anosov D.V., 1969, Geodesic flows on closed Riemann manifolds with negative curvature
[4]  
Brin M., 1974, IZV AKAD NAUK SSSR M, V38, P170
[5]  
BURNS K, 2001, SMOOTH ERGODIC THEOR, P327
[6]  
Dolgopyat D, 2003, ASTERISQUE, P33
[7]  
JUNGREIS D., 1991, INT J MATH, V2, P37, DOI [10.1142/S0129167X91000041, DOI 10.1142/S0129167X91000041]
[8]  
KOPELL N, 1970, GLOBAL ANAL, P165
[9]   An open dense set of stably ergodic diffeomorphisms in a neighborhood of a non-ergodic one [J].
Nitica, V ;
Török, A .
TOPOLOGY, 2001, 40 (02) :259-278
[10]  
PALIS J, 1989, ANN SCI ECOLE NORM S, V22, P81