Localized Boundary-Domain Singular Integral Equations Based on Harmonic Parametrix for Divergence-Form Elliptic PDEs with Variable Matrix Coefficients

被引:25
作者
Chkadua, O. [1 ,2 ]
Mikhailov, S. E. [3 ]
Natroshvili, D. [4 ,5 ]
机构
[1] I Javakhishvili Tbilisi State Univ, A Razmadze Math Inst, GE-0186 Tbilisi, Georgia
[2] Sokhumi State Univ, GE-0186 Tbilisi, Georgia
[3] Brunel Univ London, Dept Math, Uxbridge UB8 3PH, Middx, England
[4] Georgian Tech Univ, Dept Math, GE-0175 Tbilisi, Georgia
[5] Tbilisi State Univ, I Vekua Inst Appl Math, GE-0186 Tbilisi, Georgia
基金
英国工程与自然科学研究理事会;
关键词
Partial differential equations; variable coefficients; boundary value problems; localized parametrix; localized potentials; localized boundary-domain integral equations; pseudo-differential equations; MIXED BVP; LBIE METHOD; FORMULATIONS;
D O I
10.1007/s00020-013-2054-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Employing the localized integral potentials associated with the Laplace operator, the Dirichlet, Neumann and Robin boundary value problems (BVPs) for general variable-coefficient divergence-form second-order elliptic partial differential equations are reduced to some systems of localized boundary-domain singular integral equations. Equivalence of the integral equations systems to the original BVPs is proved. It is established that the corresponding localized boundary-domain integral operators belong to the Boutet de Monvel algebra of pseudo-differential operators. Applying the Vishik-Eskin theory based on the factorization method, the Fredholm properties and invertibility of the operators are proved in appropriate Sobolev spaces.
引用
收藏
页码:509 / 547
页数:39
相关论文
共 33 条
  • [1] Agranovich M. S., 1999, Generalized Method of Eigenoscillations in Diffraction Theory
  • [2] Agranovich M. S., 1965, Uspekhi Mat. Nauk, V20, P3
  • [3] Ayele TG, 2011, EURASIAN MATH J, V2, P20
  • [4] Two-Operator Boundary-Domain Integral Equations for a Variable-Coefficient BVP
    Ayele, T. G.
    Mikhailov, S. E.
    [J]. INTEGRAL METHODS IN SCIENCE AND ENGINEERING, VOL 1: ANALYTIC METHODS, 2010, : 29 - +
  • [5] BOUTETDE.L, 1971, ACTA MATH-UPPSALA, V126, P11
  • [6] Chazarain J., 1982, INTRO THEORY LINEAR
  • [7] ANALYSIS OF DIRECT SEGREGATED BOUNDARY-DOMAIN INTEGRAL EQUATIONS FOR VARIABLE-COEFFICIENT MIXED BVPs IN EXTERIOR DOMAINS
    Chkadua, O.
    Mikhailov, S. E.
    Natroshvili, D.
    [J]. ANALYSIS AND APPLICATIONS, 2013, 11 (04)
  • [8] Chkadua O, 2011, MEM DIFFER EQU MATH, V52, P17
  • [9] Analysis of Segregated Boundary-Domain Integral Equations for Variable-Coefficient Problems with Cracks
    Chkadua, O.
    Mikhailov, S. E.
    Natroshvili, D.
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2011, 27 (01) : 121 - 140
  • [10] ANALYSIS OF DIRECT BOUNDARY-DOMAIN INTEGRAL EQUATIONS FOR A MIXED BVP WITH VARIABLE COEFFICIENT, II: SOLUTION REGULARITY AND ASYMPTOTICS
    Chkadua, O.
    Mikhailov, S. E.
    Natroshvili, D.
    [J]. JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2010, 22 (01) : 19 - 37