Nikol'skij-type and maximal inequalities for generalized trigonometric polynomials

被引:1
作者
Grande, R [1 ]
Santucci, P [1 ]
机构
[1] Univ Rome La Sapienza, Dipartimento Metodi & Modelli Matematici Sci Appl, I-00161 Rome, Italy
关键词
Mathematics Subject Classification (1991): 41A17, 42A75, 42B25;
D O I
10.1007/s002290050187
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider some Nikol'skij-type inequalities, thus inequalities between different metrics of a function, for almost periodic trigonometric polynomials. Some basic methods of probability theory are applied to prove the existence of the distribution function for an almost periodic function in the sense of Besicovitch. Finally, the Maximal function of Hardy and Littlewood is considered and maximal inequalities on Besicovitch spaces are proved.
引用
收藏
页码:485 / 507
页数:23
相关论文
共 21 条
[1]  
AMERIO L, 1971, PERIODIC FUNCTIONS F
[2]   THE HAUSDORFF-YOUNG THEOREM FOR ALMOST-PERIODIC FUNCTIONS AND SOME APPLICATIONS [J].
AVANTAGGIATI, A ;
BRUNO, G ;
IANNACCI, R .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1995, 25 (01) :61-87
[3]  
AVANTAGGIATI A, 1991, RIC MAT S, V40, P59
[4]  
Avantaggiati A., 1996, MATEMATICHE, V51, P375
[5]  
AVANTAGGIATI A, 1997, ATT CONV ON CARL CIL
[6]  
BRUNO G, 1995, REND MAT, V15, P293
[7]  
CORDUNEANU C, 1968, PERIODIC FUNCTIONS
[8]  
DALLAGLIO G, 1991, ALCOLO PROBABILITA
[9]  
Grande R, 1998, Z ANAL ANWEND, V17, P917
[10]  
Iannacci R, 1998, Z ANAL ANWEND, V17, P443