Aminosilane-Functionalized Hollow Fiber Sorbents for Post-Combustion CO2 Capture

被引:15
|
作者
Li, Fuyue Stephanie [1 ]
Lively, Ryan P. [2 ]
Lee, Jong Suk [1 ]
Koros, William J. [1 ]
机构
[1] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA
[2] Algenol Biofuels, Bonita Springs, FL 34135 USA
关键词
FLUE-GAS; MEMBRANES; SEPARATION; ULTRAFILTRATION; ADSORBENTS; KINETICS; SORPTION; SILICA;
D O I
10.1021/ie3029224
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Increasing carbon dioxide emissions are generally believed to contribute to global warming. Developing new materials for capturing CO2 emitted from coal-fired plants can potentially mitigate the effect of these CO2 emissions. In this study, we developed and optimized porous hollow fiber sorbents with both improved sorption capacities and rapid sorption kinetics by functionalizing aminosilane (N-(2-aminoethyl)-3-aminoisobutyldimethylmethoxysilane) to cellulose acetate hollow fibers as a "proof of concept". A lumen-side barrier layer was also developed in the aminosilane-functionalized cellulose acetate fiber sorbent to allow for facile heat exchange without significant mass transfer with the bore-side heat transfer fluid. The functionalized cellulose acetate fiber sorbents were characterized by pressure decay sorption measurements, multicomponent column chromatography, FT-IR, elemental analysis, and scanning electron microscopy. The carbon dioxide sorption capacity at 1 atm is 0.73 mmol/g by using the pressure decay apparatus. Multicomponent column chromatography measurements showed that aminosilane functionalized cellulose acetate fiber sorbent has a CO2 sorption capacity of 0.23 mmol/g at CO2 partial pressure 0.1 atm and 35 degrees C in simulated flue gas. While this capacity is low, our proof of concept positions the technology to move forward to higher capacity with work that is underway. The presence of silicon and nitrogen elements in the elemental analysis confirmed the success of grafting along with FT-IR spectra which showed the absorbance peak (similar to 810 cm(-1)) for Si-C stretching. A crosslinked Neoprene material was used to form the lumen-side barrier layer. Preliminary data showed the required reduction in gas permeance to eliminate mixing between shell side and bore side fluid flows. Specifically the permeance was reduced from 10 000 GPUs for the neat fibers to 6.6 +/- 0.1 and 3.3 +/- 0.3 GPUs for the coated fibers. The selected lumen layer formation materials demonstrated strong resistance to water and oxygen.
引用
收藏
页码:8928 / 8935
页数:8
相关论文
共 50 条
  • [1] Aminosilane functionalized hollow fiber sorbents for post-combustion CO2 capture
    Li, Stephanie Fuyue
    Lively, Ryan P.
    Lee, Jong Suk
    Koros, William J.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [2] Poly(ethyleneimine) infused and functionalized Torlon®-silica hollow fiber sorbents for post-combustion CO2 capture
    Li, Fuyue Stephanie
    Labreche, Ying
    Lively, Ryan P.
    Lee, Jong Suk
    Jones, Christopher W.
    Koros, William J.
    POLYMER, 2014, 55 (06) : 1341 - 1346
  • [3] Polyethyleneimine-Functionalized Polyamide Imide (Torlon) Hollow-Fiber Sorbents for Post-Combustion CO2 Capture
    Li, Fuyue Stephanie
    Qiu, Wulin
    Lively, Ryan P.
    Lee, Jong Suk
    Rownaghi, Ali A.
    Koros, William J.
    CHEMSUSCHEM, 2013, 6 (07) : 1216 - 1223
  • [4] Deactivation causes of dry sorbents for post-combustion CO2 capture
    Cho, Min Sun
    Chae, Ho Jin
    Lee, Soo Chool
    Jo, Seong Bin
    Kim, Tae young
    Lee, Chul Ho
    Baek, Jeom-In
    Kim, Jae Chang
    KOREAN CHEMICAL ENGINEERING RESEARCH, 2019, 57 (02): : 253 - 258
  • [5] Post-Combustion CO2 Capture Using Solid Sorbents: A Review
    Samanta, Arunkumar
    Zhao, An
    Shimizu, George K. H.
    Sarkar, Partha
    Gupta, Rajender
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2012, 51 (04) : 1438 - 1463
  • [6] Assessment of solid sorbents as a competitive post-combustion CO2 capture technology
    Glier, Justin C.
    Rubin, Edward S.
    GHGT-11, 2013, 37 : 65 - 72
  • [7] Scale-up of PEEK hollow fiber membrane contactor for post-combustion CO2 capture
    Li, Shiguang
    Pyrzynski, Travis J.
    Klinghoffer, Naomi B.
    Tamale, Timothy
    Zhong, Yongfang
    Aderhold, James L.
    Zhou, S. James
    Meyer, Howard S.
    Ding, Yong
    Bikson, Benjamin
    JOURNAL OF MEMBRANE SCIENCE, 2017, 527 : 92 - 101
  • [8] MODELING OF THE CO2 CAPTURE IN POST-COMBUSTION
    Amann, Jean-Marc
    Descamps, Cathy
    Kanniche, Mohamed
    Bouallou, Chakib
    SCIENTIFIC STUDY AND RESEARCH-CHEMISTRY AND CHEMICAL ENGINEERING BIOTECHNOLOGY FOOD INDUSTRY, 2007, 8 (01): : 77 - 90
  • [9] Pilot Test Results of Post-Combustion CO2 Capture Using Solid Sorbents
    Sjostrom, Sharon
    Krutka, Holly
    Starns, Travis
    Campbell, Tom
    10TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, 2011, 4 : 1584 - 1592
  • [10] Overview Post-combustion CO2 capture
    Romeo, L. M.
    Bolea, I.
    BOLETIN DEL GRUPO ESPANOL DEL CARBON, 2015, (35): : 8 - 11