On the elimination of quadrature subcells for discontinuous functions in the eXtended Finite-Element Method

被引:153
作者
Ventura, G [1 ]
机构
[1] Politecn Torino, Dipartimento Ingn Strutturale & Geotecn, I-10129 Turin, Italy
关键词
finite elements; fracture; material discontinuity; vector level sets; extended finite elements; enriched finite elements; quadrature;
D O I
10.1002/nme.1570
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The introduction of discontinuous/non-differentiable functions in the extended Finite-Element Method allows to model discontinuities independent of the mesh structure. However, to compute the stiffness matrix of the elements intersected by the discontinuity, a subdivision of the elements into quadrature subcells aligned with the discontinuity line is commonly adopted. In the paper, it is shown how standard Gauss quadrature can be used in the elements containing the discontinuity without splitting the elements into subcells or introducing any additional approximation. The technique is illustrated and developed in one, two and three dimensions for crack and material discontinuity problems. Copyright (c) 2005 John Wiley & Sons, Ltd.
引用
收藏
页码:761 / 795
页数:35
相关论文
共 24 条
[1]  
Bathe K, 2007, Finite element procedures
[2]  
Belytschko T, 1999, INT J NUMER METH ENG, V45, P601, DOI 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO
[3]  
2-S
[4]  
Belytschko T, 2001, INT J NUMER METH ENG, V50, P993, DOI 10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO
[5]  
2-M
[6]  
Chessa J, 2002, INT J NUMER METH ENG, V53, P1959, DOI 10.1002/mne.386
[7]   On the construction of blending elements for local partition of unity enriched finite elements [J].
Chessa, J ;
Wang, HW ;
Belytschko, T .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2003, 57 (07) :1015-1038
[8]   An extended finite element method for modeling crack growth with frictional contact [J].
Dolbow, J ;
Moës, N ;
Belytschko, T .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 190 (51-52) :6825-6846
[9]   Non-planar 3D crack growth by the extended finite element and level sets -: Part II:: Level set update [J].
Gravouil, A ;
Moës, N ;
Belytschko, T .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2002, 53 (11) :2569-2586
[10]  
Hughes T. J. R., 2012, The finite element method: linear static and dynamic finite element analysis