Composite vortices in nonlinear circular waveguide arrays

被引:13
|
作者
Leykam, Daniel [1 ]
Malomed, Boris [2 ]
Desyatnikov, Anton S. [1 ]
机构
[1] Australian Natl Univ, Nonlinear Phys Ctr, Res Sch Phys & Engn, Canberra, ACT 0200, Australia
[2] Tel Aviv Univ, Dept Phys Elect, Sch Elect Engn, Fac Engn, IL-69978 Tel Aviv, Israel
基金
澳大利亚研究理事会;
关键词
discrete vortex; cross phase modulation; hidden vorticity; linear stability; VECTOR SOLITONS; VORTEX SOLITONS; DISCRETE SOLITONS; OPTICAL VORTICES; STABILITY; BEAMS; MEDIA;
D O I
10.1088/2040-8978/15/4/044016
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
It is known that, in continuous media, composite solitons with hidden vorticity, which are built of two mutually symmetric vortical components whose total angular momentum is zero, may be stable while their counterparts with explicit vorticity and nonzero total angular momentum are unstable. In this work, we demonstrate that the opposite occurs in discrete media: hidden vortex states in relatively small ring chains become unstable with the increase of the total power, while explicit vortices are stable, provided that the corresponding scalar vortex state is also stable. There are also stable mixed states, in which the components are vortices with different topological charges. Additionally, degeneracies in families of composite vortex modes lead to the existence of long-lived breather states which can exhibit vortex-charge flipping in one or both components.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Higher-charged vortices in mixed linear-nonlinear circular arrays
    Dong, Liangwei
    Li, Huijun
    Huang, Changming
    Zhong, Shunsheng
    Li, Chunyan
    PHYSICAL REVIEW A, 2011, 84 (04):
  • [2] Vortex Solitons in Twisted Circular Waveguide Arrays
    Dong, Liangwei
    Kartashov, Yaroslav, V
    Torner, Lluis
    Ferrando, Albert
    PHYSICAL REVIEW LETTERS, 2022, 129 (12)
  • [3] Discrete reduced-symmetry solitons and second-band vortices in two-dimensional nonlinear waveguide arrays
    Johansson, Magnus
    Sukhorukov, Andrey A.
    Kivshar, Yuri S.
    PHYSICAL REVIEW E, 2009, 80 (04):
  • [4] Competing nonlinearities in quadratic nonlinear waveguide arrays
    Setzpfandt, Frank
    Neshev, Dragomir N.
    Schiek, Roland
    Lederer, Falk
    Tuennermann, Andreas
    Pertsch, Thomas
    OPTICS LETTERS, 2009, 34 (22) : 3589 - 3591
  • [5] Nonlinear light propagation in fractal waveguide arrays
    Jia, Shu
    Fleischer, Jason W.
    OPTICS EXPRESS, 2010, 18 (14): : 14409 - 14414
  • [6] Observation of nonlinear Light Bullets in waveguide arrays
    Eilenberger, F.
    Minardi, S.
    Pshenay-Severin, E.
    Kartashov, Y.
    Szameit, A.
    Roepke, U.
    Kobelke, J.
    Schuster, K.
    Torner, L.
    Bartelt, H.
    Nolte, S.
    Lederer, F.
    Tuennermann, A.
    Pertsch, T.
    2011 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2011,
  • [7] Solitary vortices in two-dimensional waveguide matrix
    Chen, Guihua
    Huang, Hongcheng
    Wu, Muying
    JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2015, 24 (01)
  • [8] Spectral pulse transformations and phase transitions in quadratic nonlinear waveguide arrays
    Setzpfandt, Frank
    Sukhorukov, Andrey A.
    Neshev, Dragomir N.
    Schiek, Roland
    Solntsev, Alexander S.
    Ricken, Raimund
    Min, Yoohong
    Sohler, Wolfgang
    Kivshar, Yuri S.
    Pertsch, Thomas
    OPTICS EXPRESS, 2011, 19 (23): : 23188 - 23201
  • [9] Linear and nonlinear light propagation at the interface of two homogeneous waveguide arrays
    Kanshu, A.
    Rueter, C. E.
    Kip, D.
    Belicev, P. P.
    Ilic, I.
    Stepic, M.
    Shandarov, V. M.
    OPTICS EXPRESS, 2011, 19 (02): : 1158 - 1167
  • [10] Optical limiting properties of nonlinear multimode waveguide arrays
    Butler, James J.
    Flom, Steven R.
    Shirk, James S.
    Taunay, Thierry E.
    Wright, Barbara M.
    Wiggins, Michael J.
    OPTICS EXPRESS, 2009, 17 (02): : 804 - 809