SPATIAL-SPECTRAL CLASSIFICATION BASED ON THE UNSUPERVISED CONVOLUTIONAL SPARSE AUTO-ENCODER FOR HYPERSPECTRAL REMOTE SENSING IMAGERY

被引:8
作者
Han, Xiaobing [1 ,2 ]
Zhong, Yanfei [1 ,2 ]
Zhang, Liangpei [1 ,2 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Peoples R China
[2] Wuhan Univ, Collaborat Innovat Ctr Geospatial Technol, Wuhan 430079, Peoples R China
来源
XXIII ISPRS CONGRESS, COMMISSION VII | 2016年 / 3卷 / 07期
关键词
spatial-spectral classification; hyperspectral remote sensing imagery; sparse auto-encoder (SAE); convolution; unsupervised convolutional sparse auto-encoder (UCSAE); ALGORITHM;
D O I
10.5194/isprsannals-III-7-25-2016
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Current hyperspectral remote sensing imagery spatial-spectral classification methods mainly consider concatenating the spectral information vectors and spatial information vectors together. However, the combined spatial-spectral information vectors may cause information loss and concatenation deficiency for the classification task. To efficiently represent the spatial-spectral feature information around the central pixel within a neighbourhood window, the unsupervised convolutional sparse auto-encoder (UCSAE) with window-in-window selection strategy is proposed in this paper. Window-in-window selection strategy selects the sub-window spatial-spectral information for the spatial-spectral feature learning and extraction with the sparse auto-encoder (SAE). Convolution mechanism is applied after the SAE feature extraction stage with the SAE features upon the larger outer window. The UCSAE algorithm was validated by two common hyperspectral imagery (HSI) datasets-Pavia University dataset and the Kennedy Space Centre (KSC) dataset, which shows an improvement over the traditional hyperspectral spatial-spectral classification methods.
引用
收藏
页码:25 / 31
页数:7
相关论文
共 31 条
[1]  
[Anonymous], 2010, PROC CVPR IEEE, DOI DOI 10.1109/CVPR.2010.5539963
[2]  
Bengio Y., 2007, ADV NEUR IN, V19
[3]   Learning Deep Architectures for AI [J].
Bengio, Yoshua .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2009, 2 (01) :1-127
[4]  
Boureau Y.-L., 2010, Learning mid-level features for recognition
[5]   Advances in Hyperspectral Image Classification [J].
Camps-Valls, Gustavo ;
Tuia, Devis ;
Bruzzone, Lorenzo ;
Benediktsson, Jon Atli .
IEEE SIGNAL PROCESSING MAGAZINE, 2014, 31 (01) :45-54
[6]  
Chang C.-I, 2013, Hyperspectral Data Processing: Algorithm Design and Analysis
[7]   Deep Learning-Based Classification of Hyperspectral Data [J].
Chen, Yushi ;
Lin, Zhouhan ;
Zhao, Xing ;
Wang, Gang ;
Gu, Yanfeng .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) :2094-2107
[8]  
Coates A., 2011, P 14 AISTATS, P215
[9]   Advances in Spectral-Spatial Classification of Hyperspectral Images [J].
Fauvel, Mathieu ;
Tarabalka, Yuliya ;
Benediktsson, Jon Atli ;
Chanussot, Jocelyn ;
Tilton, James C. .
PROCEEDINGS OF THE IEEE, 2013, 101 (03) :652-675
[10]   Spectral and Spatial Classification of Hyperspectral Data Using SVMs and Morphological Profiles [J].
Fauvel, Mathieu ;
Benediktsson, Jon Atli ;
Chanussot, Jocelyn ;
Sveinsson, Johannes R. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (11) :3804-3814