Modeling the Effect of Charge Density in the Active Layers of Reverse Osmosis and Nanofiltration Membranes on the Rejection of Arsenic(III) and Potassium Iodide

被引:45
作者
Coronell, Orlando [1 ]
Mi, Baoxia [2 ]
Marinas, Benito J. [3 ]
Cahill, David G. [4 ,5 ]
机构
[1] Univ N Carolina Chapel Hill, Gillings Sch Global Publ Hlth, Dept Environm Sci & Engn, Chapel Hill, NC 27599 USA
[2] Univ Maryland, A James Clark Sch Engn, Dept Civil & Environm Engn, College Pk, MD 20742 USA
[3] Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA
[4] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA
[5] Univ Illinois, Sci & Technol Ctr Adv Mat Purificat Water Syst, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
IONIZATION BEHAVIOR; FUNCTIONAL-GROUPS; ION-TRANSPORT; SINGLE SALTS; STOICHIOMETRY; ACCESSIBILITY; COEFFICIENTS; PERFORMANCE; MORPHOLOGY; WATER;
D O I
10.1021/es302850p
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We used an extended solution-diffusion model that incorporates Donnan electrostatic exclusion of ions and unhindered advection due to imperfections, and measurements of charge density in the polyamide active layers of reverse osmosis (RO) and nanofiltration (NF) membranes, to predict the rejection of a strong electrolyte (i.e., potassium iodide) and a weak acid (i.e., arsenious acid) as a function of the pH of the feed aqueous solution. Predictions of solute rejection were in agreement with experimental data indicating that (i) the extended solution-diffusion model taking into account Donnan exclusion and unhindered advection due to imperfections satisfactorily describes the effect of pH on solute rejection by RO/NF membranes and (ii) measurement of charge density in active layers provides a valuable characterization of RO/NF membranes. Our results and analysis also indicate that independent ions, and not ion pairs, dominate the permeation of salts.
引用
收藏
页码:420 / 428
页数:9
相关论文
共 42 条
  • [1] Adham S.S., 1998, J. Am. Water Works Assn, V9
  • [2] American Public Health Association (APHA), 1992, STANDARD METHODS EXA
  • [3] [Anonymous], NANOFILTRATION PRINC
  • [4] Characterization of ion transport in thin films using electrochemical impedance spectroscopy II: Examination of the polyamide layer of RO membranes
    Bason, Sarit
    Oren, Yoram
    Freger, Viatcheslav
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2007, 302 (1-2) : 10 - 19
  • [5] Phenomenological analysis of transport of mono- and divalent ions in nanofiltration
    Bason, Sarit
    Freger, Viatcheslav
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2010, 360 (1-2) : 389 - 396
  • [6] Benjamin M.M., 2002, Water Chemistry, P668
  • [7] Modelling the performance of membrane nanofiltration - critical assessment and model development
    Bowen, WR
    Welfoot, JS
    [J]. CHEMICAL ENGINEERING SCIENCE, 2002, 57 (07) : 1121 - 1137
  • [8] Relating nanofiltration membrane performance to membrane charge (electrokinetic) characteristics
    Childress, AE
    Elimelech, M
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2000, 34 (17) : 3710 - 3716
  • [9] Coronell O., 2012, PRESENTED AT THE 201
  • [10] Quantification of functional groups and modeling of their ionization behavior in the active layer of FT30 reverse osmosis membrane
    Coronell, Orlando
    Marinas, Benito J.
    Zhang, Xijiang
    Cahill, David G.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (14) : 5260 - 5266