A Novel Similarity Measure Based on Weighted Bipartite Network for Collaborative Filtering Recommendation

被引:1
|
作者
Xia, Jianxun [1 ]
Wu, Fei [1 ]
Xie, Changsheng [1 ]
机构
[1] Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R China
来源
INFORMATION TECHNOLOGY APPLICATIONS IN INDUSTRY, PTS 1-4 | 2013年 / 263-266卷
关键词
Personal recommendation; Collaborative filtering; Weighted bipartite network; Similarity measure;
D O I
10.4028/www.scientific.net/AMM.263-266.1834
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents a novel approach to compute user similarity based on weighted bipartite network and resource allocation principle for collaborative filtering recommendation. The key is to calculate the asymmetric user weighted matrix and translate it into a symmetric user similarity matrix. We carry out extensive experiments over Movielens data set and demonstrate that the proposed approach can yield better recommendation accuracy and can partly to alleviate the trouble of sparseness. Compare with traditional collaborative filtering recommendation algorithms based on Pearson correlation similarity and adjusted cosine similarity, the proposed method can improve the average predication accuracy by 6.7% and 0.6% respectively.
引用
收藏
页码:1834 / 1837
页数:4
相关论文
共 50 条
  • [21] A novel similarity measure towards effective recommendation using Matusita coefficient for Collaborative Filtering in a sparse dataset
    C Selvi
    E Sivasankar
    Sādhanā, 2018, 43
  • [22] A novel similarity measure towards effective recommendation using Matusita coefficient for Collaborative Filtering in a sparse dataset
    Selvi, C.
    Sivasankar, E.
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2018, 43 (12):
  • [23] A similarity measure for collaborative filtering with implicit feedback
    Lee, Tong Queue
    Park, Young
    Park, Yong-Tae
    ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS, PROCEEDINGS: WITH ASPECTS OF ARTIFICIAL INTELLIGENCE, 2007, 4682 : 385 - 397
  • [24] Similarity measure and instance selection for collaborative filtering
    Zeng, C
    Xing, CX
    Zhou, LZ
    Zheng, XH
    INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE, 2004, 8 (04) : 115 - 129
  • [25] Improved Collaborative Filtering Recommendation Through Similarity Prediction
    Joorabloo, Nima
    Jalili, Mahdi
    Ren, Yongli
    IEEE ACCESS, 2020, 8 : 202122 - 202132
  • [26] Collaborative filtering with a graph-based similarity measure
    Do Thi Lien
    Nguyen Duy Phuong
    2014 INTERNATIONAL CONFERENCE ON COMPUTING, MANAGEMENT AND TELECOMMUNICATIONS (COMMANTEL), 2014, : 251 - 256
  • [27] Maximal Information Based Similarity Measure for Collaborative Filtering
    Linn, Su Mon
    Lwin, May Thu
    2019 20TH IEEE/ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING (SNPD), 2019, : 190 - 194
  • [28] The New Similarity Measure Based on User Preference Models for Collaborative Filtering
    Cheng, Qiao
    Wang, Xiangke
    Yin, Dong
    Niu, Yifeng
    Xiang, Xiaojia
    Yang, Jian
    Shen, Lincheng
    2015 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION, 2015, : 577 - 582
  • [29] Collaborative filtering recommendation algorithm based on user fuzzy similarity
    Wu, Yitao
    Zhang, Xingming
    Yu, Hong
    Wei, Shuai
    Guo, Wei
    INTELLIGENT DATA ANALYSIS, 2017, 21 (02) : 311 - 327
  • [30] Application of Similarity Metrics in Collaborative Filtering Based Recommendation Systems
    Radisic, Igor
    Lazarevic, Sasa
    2019 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE: APPLICATIONS AND INNOVATIONS (IC-AIAI 2019), 2019, : 82 - 85