Tumor-suppressive microRNA-135a inhibits cancer cell proliferation by targeting the c-MYC oncogene in renal cell carcinoma

被引:84
作者
Yamada, Yasutoshi [1 ]
Hidaka, Hideo [1 ]
Seki, Naohiko [2 ]
Yoshino, Hirofumi [1 ]
Yamasaki, Takeshi [1 ]
Itesako, Toshihiko [1 ]
Nakagawa, Masayuki [1 ]
Enokida, Hideki [1 ]
机构
[1] Kagoshima Univ, Dept Urol, Grad Sch Med & Dent Sci, Kagoshima 890, Japan
[2] Chiba Univ, Grad Sch Med, Dept Funct Genom, Chiba, Japan
关键词
FUNCTIONAL-SIGNIFICANCE; DOWN-REGULATION; MIR-133A; EXPRESSION; IDENTIFICATION; TRANSFORMATION; MIGRATION; NETWORKS; INVASION; TAGLN2;
D O I
10.1111/cas.12072
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Recently, many studies have suggested that microRNAs (miRNAs) are involved in cancer cell development, invasion, and metastasis of various types of human cancers. In a previous study, miRNA expression signatures from renal cell carcinoma (RCC) revealed that expression of microRNA-135a (miR-135a) was significantly reduced in cancerous tissues. The aim of this study was to investigate the functional significance of miR-135a and to identify miR-135a-mediated molecular pathways in RCC cells. Restoration of mature miR-135a significantly inhibited cancer cell proliferation and induced G0/G1 arrest in the RCC cell lines caki2 and A498, suggesting that miR-135a functioned as a potential tumor suppressor. We then examined miR-135a-mediated molecular pathways using genome-wide gene expression analysis and in silico analysis. A total of 570 downregulated genes were identified in miR-135a transfected RCC cell lines. To investigate the biological significance of potential miR-135a-mediated pathways, we classified putative miR-135a-regulated genes according to the Kyoto Encyclopedia of Genes and Genomics pathway database. From our in silico analysis, 25 pathways, including the cell cycle, pathways in cancer, DNA replication, and focal adhesion, were significantly regulated by miR-135a in RCC cells. Moreover, based on the results of this analysis, we investigated whether miR-135a targeted the c-MYC gene in RCC. Gain-of-function and luciferase reporter assays showed that c-MYC was directly regulated by miR-135a in RCC cells. Furthermore, c-MYC expression was significantly upregulated in RCC clinical specimens. Our data suggest that elucidation of tumor-suppressive miR-135a-mediated molecular pathways could reveal potential therapeutic targets in RCC.
引用
收藏
页码:304 / 312
页数:9
相关论文
共 49 条
[1]   No improvement in renal cell carcinoma survival: A population-based study in the Netherlands [J].
Aben, K. K. H. ;
Luth, T. K. ;
Janssen-Heijnen, M. L. G. ;
Mulders, P. F. ;
Kiemeney, L. A. ;
van Spronsen, D. J. .
EUROPEAN JOURNAL OF CANCER, 2008, 44 (12) :1701-1709
[2]   Transcriptional regulation and transformation by MYC proteins [J].
Adhikary, S ;
Eilers, M .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2005, 6 (08) :635-645
[3]  
[Anonymous], UROL ONCOL
[4]  
[Anonymous], 2009, TNM Classification of Malignant Tumors
[5]   Conditional transgenic models define how MYC initiates and maintains tumorigenesis [J].
Arvanitis, Constadina ;
Felsher, Dean W. .
SEMINARS IN CANCER BIOLOGY, 2006, 16 (04) :313-317
[6]   Renal cell carcinoma [J].
Cairns, Paul .
CANCER BIOMARKERS, 2011, 9 (1-6) :461-473
[7]   miR-145 and miR-133a function as tumour suppressors and directly regulate FSCN1 expression in bladder cancer [J].
Chiyomaru, T. ;
Enokida, H. ;
Tatarano, S. ;
Kawahara, K. ;
Uchida, Y. ;
Nishiyama, K. ;
Fujimura, L. ;
Kikkawa, N. ;
Seki, N. ;
Nakagawa, M. .
BRITISH JOURNAL OF CANCER, 2010, 102 (05) :883-891
[8]   The c-Myc target gene network [J].
Dang, Chi V. ;
O'Donnell, Kathryn A. ;
Zeller, Karen I. ;
Nguyen, Tam ;
Osthus, Rebecca C. ;
Li, Feng .
SEMINARS IN CANCER BIOLOGY, 2006, 16 (04) :253-264
[9]   Myc's broad reach [J].
Eilers, Martin ;
Eisenman, Robert N. .
GENES & DEVELOPMENT, 2008, 22 (20) :2755-2766
[10]   Oncomirs - microRNAs with a role in cancer [J].
Esquela-Kerscher, A ;
Slack, FJ .
NATURE REVIEWS CANCER, 2006, 6 (04) :259-269