Super-strong materials for temperatures exceeding 2000 °C

被引:139
作者
Silvestroni, Laura [1 ]
Kleebe, Hans-Joachim [2 ]
Fahrenholtz, William G. [3 ]
Watts, Jeremy [3 ]
机构
[1] CNR ISTEC, Inst Sci & Technol Ceram, Via Granarolo 64, I-48018 Faenza, Italy
[2] TUD IAG, Inst Appl Geosci, Schnittspahnstr 9, D-64287 Darmstadt, Germany
[3] Missouri Univ Sci & Technol, Dept Mat Sci & Engn, Rolla, MO 65409 USA
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
关键词
MECHANICAL-PROPERTIES; ZIRCONIUM DIBORIDE; SILICON-CARBIDE; ELEVATED-TEMPERATURE; OXIDATION RESISTANCE; CERAMIC MATERIALS; BEHAVIOR; MICROSTRUCTURE; NANOCOMPOSITES; DENSIFICATION;
D O I
10.1038/srep40730
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Ceramics based on group IV-V transition metal borides and carbides possess melting points above 3000 degrees C, are ablation resistant and are, therefore, candidates for the design of components of next generation space vehicles, rocket nozzle inserts, and nose cones or leading edges for hypersonic aerospace vehicles. As such, they will have to bear high thermo-mechanical loads, which makes strength at high temperature of great importance. While testing of these materials above 2000 degrees C is necessary to prove their capabilities at anticipated operating temperatures, literature reports are quite limited. Reported strength values for zirconium diboride (ZrB2) ceramics can exceed 1 GPa at room temperature, but these values rapidly decrease, with all previously reported strengths being less than 340 MPa at 1500 degrees C or above. Here, we show how the strength of ZrB2 ceramics can be increased to more than 800 MPa at temperatures in the range of 1500-2100 degrees C. These exceptional strengths are due to a core-shell microstructure, which leads to in-situ toughening and sub-grain refinement at elevated temperatures. Our findings promise to open a new avenue to designing materials that are super-strong at ultra-high temperatures.
引用
收藏
页数:8
相关论文
共 41 条
  • [1] Abriata J.P., 1986, B ALLOY PHASE DIAGR, V7, P116, DOI [10.1007/BF02881546, DOI 10.1007/BF02881546]
  • [2] FLOW CHARACTERISTICS OF HIGHLY CONSTRAINED METAL WIRES
    ASHBY, MF
    BLUNT, FJ
    BANNISTER, M
    [J]. ACTA METALLURGICA, 1989, 37 (07): : 1847 - 1857
  • [3] Oxidation Resistance of Hafnium Diboride Ceramics with Additions of Silicon Carbide and Tungsten Boride or Tungsten Carbide
    Carney, Carmen M.
    Parthasarathy, Triplicane A.
    Cinibulk, Michael K.
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2011, 94 (08) : 2600 - 2607
  • [4] CONDENSED PHASE RELATIONS IN SYSTEMS ZRO2-WO2-WO3 AND HFO2-WO2-WO3
    CHANG, LLY
    SCROGER, MG
    PHILLIPS, B
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1967, 50 (04) : 211 - &
  • [5] Microstructure and high temperature mechanical properties of TiC0.7N0.3-Mo2C-Ni cermets
    Cutard, T
    Viatte, T
    Feusier, G
    Benoit, W
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1996, 209 (1-2): : 218 - 227
  • [6] Cutler R.A., 1991, CERAMICS GLASSES ENG, V4, P787
  • [7] HIGH-TEMPERATURE FAILURE OF POLYCRYSTALLINE ALUMINA .1. CRACK NUCLEATION
    DALGLEISH, BJ
    JOHNSON, SM
    EVANS, AG
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1984, 67 (11) : 741 - 750
  • [8] Evans A. G., 1979, ACTA METALL, V28, P128
  • [9] Evans A. G., 1984, DEFORMATION CERAMIC, P487, DOI DOI 10.1007/978-1-4615-6802-5_33
  • [10] Fahrenholtz WG., 2014, ULTRAHIGH TEMPERATUR, P112