Characterization and graph embedding of weighted social networks through Diffusion Wavelets

被引:0
|
作者
Chen, Zhiliang [1 ,2 ]
Wu, Junfeng [1 ,2 ]
Li, Huakang [1 ,3 ,4 ]
Sun, Guozi [1 ,2 ]
机构
[1] Nanjing Univ Posts & Telecommun, Nanjing, Peoples R China
[2] New York Inst Technol, New York, NY USA
[3] Collaborat Innovat Ctr Econ Crime Invest & Preven, Nanchang, Jiangxi, Peoples R China
[4] Suzhou Privacy Informat Technol Co Ltd, Suzhou, Peoples R China
来源
2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA) | 2019年
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Weighted relationship; graph embedding; graph-wave; social network;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
More and more graph embedding algorithms have been proposed, which makes the similarity judgment of graph structure more and more accurate. While exploring the similarity of neighborhood structures, the existence of weights should also be taken into account, so as to reflect the relational social network graph in the real world. We use Graphwave, a kind of algorithms for graph embedding with diffusion wavelets, to incorporate weight into numerical value to calculate, and to process the returned probability distribution parameters, so that we can get some analysis about the actual complex network. Our analysis can overcome the priori misjudgment problem based on the topological structure, and then obtain the actual similarity of the network structure from the results of graph embedding.
引用
收藏
页码:5346 / 5352
页数:7
相关论文
共 50 条
  • [41] Learning Temporal Interaction Graph Embedding via Coupled Memory Networks
    Zhang, Zhen
    Bu, Jiajun
    Ester, Martin
    Zhang, Jianfeng
    Yao, Chengwei
    Li, Zhao
    Wang, Can
    WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), 2020, : 3049 - 3055
  • [42] Beta-informativeness-diffusion multilayer graph embedding for brain network analysis
    Huang, Yin
    Li, Ying
    Yuan, Yuting
    Zhang, Xingyu
    Yan, Wenjie
    Li, Ting
    Niu, Yan
    Xu, Mengzhou
    Yan, Ting
    Li, Xiaowen
    Li, Dandan
    Xiang, Jie
    Wang, Bin
    Yan, Tianyi
    FRONTIERS IN NEUROSCIENCE, 2024, 18
  • [43] Privacy protection and utility trade-off for social graph embedding
    Cai, Lin
    Tang, Jinchuan
    Dang, Shuping
    Chen, Gaojie
    INFORMATION SCIENCES, 2024, 676
  • [44] Social account linking via weighted bipartite graph matching
    Ma, Jiangtao
    Qiao, Yaqiong
    Hu, Guangwu
    Li, Tong
    Huang, Yongzhong
    Wang, Yanjun
    Zhang, Chaoqin
    INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, 2018, 31 (07)
  • [45] Opinion Maximization Through Unknown Influence Power in Social Networks Under Weighted Voter Model
    He, Qiang
    Wang, Xingwei
    Yi, Bo
    Mao, Fubing
    Cai, Yuliang
    Huang, Min
    IEEE SYSTEMS JOURNAL, 2020, 14 (02): : 1874 - 1885
  • [46] Model of community emergence in weighted social networks
    Kumpula, J. M.
    Onnela, J. -P.
    Saramaki, J.
    Kertesz, J.
    Kaski, K.
    COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (04) : 517 - 522
  • [47] Enhancing the Performance of Spatial Queries on Encrypted Data Through Graph Embedding
    Shaham, Sina
    Ghinita, Gabriel
    Shahabi, Cyrus
    DATA AND APPLICATIONS SECURITY AND PRIVACY XXXIV, DBSEC 2020, 2020, 12122 : 289 - 309
  • [48] Exploiting node metadata to predict interactions in bipartite networks using graph embedding and neural networks
    Runghen, Rogini
    Stouffer, Daniel B. B.
    Dalla Riva, Giulio V. V.
    ROYAL SOCIETY OPEN SCIENCE, 2022, 9 (08):
  • [49] Graph relation embedding network for click-through rate prediction
    Yixuan Wu
    Youpeng Hu
    Xin Xiong
    Xunkai Li
    Ronghui Guo
    Shuiguang Deng
    Knowledge and Information Systems, 2022, 64 : 2543 - 2564
  • [50] Graph relation embedding network for click-through rate prediction
    Wu, Yixuan
    Hu, Youpeng
    Xiong, Xin
    Li, Xunkai
    Guo, Ronghui
    Deng, Shuiguang
    KNOWLEDGE AND INFORMATION SYSTEMS, 2022, 64 (09) : 2543 - 2564