Microbial activity promoted with organic carbon accumulation in macroaggregates of paddy soils under long-term rice cultivation

被引:34
作者
Liu, Yalong [1 ,2 ,3 ]
Wang, Ping [1 ,2 ,3 ]
Ding, Yuanjun [1 ,2 ]
Lu, Haifei [1 ,2 ]
Li, Lianqing [1 ,2 ]
Cheng, Kun [1 ,2 ]
Zheng, Jufeng [1 ,2 ]
Filley, Timothy [4 ]
Zhang, Xuhui [1 ,2 ]
Zheng, Jinwei [1 ,2 ]
Pan, Genxing [1 ,2 ,5 ]
机构
[1] Nanjing Agr Univ, Inst Resource Ecosyst & Environm Agr, 1 Weigang, Nanjing 210095, Jiangsu, Peoples R China
[2] Nanjing Agr Univ, Dept Soil Sci, 1 Weigang, Nanjing 210095, Jiangsu, Peoples R China
[3] Shenyang Agr Univ, Land & Environm Coll, Dept Soil Sci, Shenyang 110866, Peoples R China
[4] Purdue Univ, Dept Earth Atmospher & Planetary Sci, W Lafayette, IN 47907 USA
[5] Zhejiang A&F Univ, Sch Environm & Resource Sci, Ctr Terr Ecosyst Carbon Sink & Land Remediat, Hangzhou 311300, Zhejiang, Peoples R China
关键词
PARTICLE-SIZE FRACTIONS; TAI LAKE REGION; COMMUNITY STRUCTURE; ENZYME-ACTIVITIES; RIVER DELTA; LAND-USE; FT-IR; MATTER; STABILIZATION; SEQUESTRATION;
D O I
10.5194/bg-13-6565-2016
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
While soil organic carbon (SOC) accumulation and stabilization has been increasingly the focus of ecosystem properties, how it could be linked to soil biological activity enhancement has been poorly assessed. In this study, topsoil samples were collected from a series of rice soils shifted from salt marshes for 0, 50, 100, 300 and 700 years from a coastal area of eastern China. Soil aggregates were fractioned into different sizes of coarse sand (200-2000 mu m), fine sand (20-200 mu m), silt (2-20 mu m) and clay (< 2 mu m), using separation with a low-energy dispersion protocol. Soil properties were determined to investigate niche specialization of different soil particle fractions in response to long-term rice cultivation, including recalcitrant and labile organic carbon, microbial diversity of bacterial, archaeal and fungal communities, soil respiration and enzyme activity. The results showed that the mass proportion both of coarse-sand (2000-200 mu m) and clay (< 2 mu m) fractions increased with prolonged rice cultivation, but the aggregate size fractions were dominated by fine-sand (200-20 mu m) and silt (20-2 mu m) fractions across the chronosequence. SOC was highly enriched in coarse-sand fractions (40-60 g kg(-1)) and moderately in clay fractions (20-25 g kg(-1)), but was depleted in silt fractions (similar to 10 g kg(-1)). The recalcitrant carbon pool was higher (33-40% of SOC) in both coarse-sand and clay fractions than in fine-sand and silt fractions (20-29% of SOC). However, the ratio of labile organic carbon (LOC) to SOC showed a weakly decreasing trend with decreasing size of aggregate fractions. Total soil DNA (deoxyribonucleic acid) content in the size fractions followed a similar trend to that of SOC. Despite the largely similar diversity between the fractions, 16S ribosomal gene abundance of bacteria and of archaeal were concentrated in both coarse-sand and clay fractions. Being the highest generally in coarse-sand fractions, 18S rRNA gene abundance of fungi decreased sharply but the diversity gently, with decreasing size of the aggregate fractions. The soil respiration quotient (ratio of respired CO2-C to SOC) was the highest in the silt fraction, followed by the fine-sand fraction, but the lowest in coarse-sand and clay fractions in the rice soils cultivated over 100 years, whereas the microbial metabolic quotient was lower in coarse-sandsized fractions than in other fractions. Soil respiration was higher in the silt fraction than in other fractions for the rice soils. For the size fractions other than the clay fraction, enzyme activity was increased with prolonged rice cultivation, whereas soil respiration appeared to have a decreasing trend. Only in the coarse-sand fraction was both microbial gene abundance and enzyme activity well correlated to SOC and LOC content, although the chemical stability and respiratory of SOC were similar between coarse-sand and clay fractions. Thus, biological activity was generally promoted with LOC accumulation in the coarse-sand-sized macroaggregates of the rice soils, positively responding to prolonged rice cultivation management. The finding here provides a mechanistic understanding of soil organic carbon turnover and microbial community succession at fine scale of soil aggregates that have evolved along with anthropogenic activity of rice cultivation in the field.
引用
收藏
页码:6565 / 6586
页数:22
相关论文
共 122 条
[1]   Activities of extracellular enzymes in physically isolated fractions of restored grassland soils [J].
Allison, Steven D. ;
Jastrow, Julie D. .
SOIL BIOLOGY & BIOCHEMISTRY, 2006, 38 (11) :3245-3256
[2]   Soil-carbon response to warming dependent on microbial physiology [J].
Allison, Steven D. ;
Wallenstein, Matthew D. ;
Bradford, Mark A. .
NATURE GEOSCIENCE, 2010, 3 (05) :336-340
[3]   Bridging the gap between micro - and macro-scale perspectives on the role of microbial communities in global change ecology [J].
Balser, T. C. ;
McMahon, K. D. ;
Bart, D. ;
Bronson, D. ;
Coyle, D. R. ;
Craig, N. ;
Flores-Mangual, M. L. ;
Forshay, K. ;
Jones, S. E. ;
Kent, A. E. ;
Shade, A. L. .
PLANT AND SOIL, 2006, 289 (1-2) :59-70
[4]   Changes in Diversity and Functional Gene Abundances of Microbial Communities Involved in Nitrogen Fixation, Nitrification, and Denitrification in a Tidal Wetland versus Paddy Soils Cultivated for Different Time Periods [J].
Bannert, Andrea ;
Kleineidam, Kristina ;
Wissing, Livia ;
Mueller-Niggemann, Cornelia ;
Vogelsang, Vanessa ;
Welzl, Gerhard ;
Cao, Zhihong ;
Schloter, Michael .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2011, 77 (17) :6109-6116
[5]   Benefits of soil carbon: report on the outcomes of an international scientific committee on problems of the environment rapid assessment workshop [J].
Banwart, Steve S. ;
Black, Helaina B. ;
Cai, Zucong Z. ;
Gicheru, Patrick G. ;
Joosten, Hans J. ;
Victoria, Reynaldo V. ;
Milne, Eleanor E. ;
Noellemeyer, Elke N. ;
Pascual, Unai P. ;
Nziguheba, Generose G. ;
Vargas, Rodrigo R. ;
Bationo, Andre B. ;
Buschiazzo, Daniel B. ;
de-Brogniez, Delphine D. ;
Melillo, Jerry M. ;
Richter, Dan R. ;
Termansen, Mette T. ;
van Noordwijk, Meine N. ;
Goverse, Tessa G. ;
Ballabio, Cristiano C. ;
Bhattacharyya, Tapas B. ;
Goldhaber, Marty M. ;
Nikolaidis, Nikolaos N. ;
Zhao, Yongcun Z. ;
Funk, Roger F. ;
Duffy, Chris C. ;
Pan, Genxing P. ;
la Scala, Newton L. ;
Gottschalk, Pia G. ;
Batjes, Niels B. ;
Six, Johan ;
van Wesemael, Bas W. ;
Stocking, Michael S. ;
Bampa, Francesca B. ;
Bernoux, Martial B. ;
Feller, Christian C. ;
Lemanceau, Philippe P. ;
Montanarella, Luca L. .
CARBON MANAGEMENT, 2014, 5 (02) :185-192
[6]   Belowground biodiversity and ecosystem functioning [J].
Bardgett, Richard D. ;
van der Putten, Wim H. .
NATURE, 2014, 515 (7528) :505-511
[7]   Interpreting ecological diversity indices applied to terminal restriction fragment length polymorphism data: Insights from simulated microbial communities [J].
Blackwood, Christopher B. ;
Hudleston, Deborah ;
Zak, Donald R. ;
Buyer, Jeffrey S. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2007, 73 (16) :5276-5283
[8]   SOIL CARBON FRACTIONS BASED ON THEIR DEGREE OF OXIDATION, AND THE DEVELOPMENT OF A CARBON MANAGEMENT INDEX FOR AGRICULTURAL SYSTEMS [J].
BLAIR, GJ ;
LEFROY, RDB ;
LISE, L .
AUSTRALIAN JOURNAL OF AGRICULTURAL RESEARCH, 1995, 46 (07) :1459-1466
[9]   Mechanisms of carbon sequestration in soil aggregates [J].
Blanco-Canqui, H ;
Lal, R .
CRITICAL REVIEWS IN PLANT SCIENCES, 2004, 23 (06) :481-504
[10]   Soil enzymes in a changing environment: Current knowledge and future directions [J].
Burns, Richard G. ;
DeForest, Jared L. ;
Marxsen, Juergen ;
Sinsabaugh, Robert L. ;
Stromberger, Mary E. ;
Wallenstein, Matthew D. ;
Weintraub, Michael N. ;
Zoppini, Annamaria .
SOIL BIOLOGY & BIOCHEMISTRY, 2013, 58 :216-234