On upper bounds for the energy of digraphs

被引:8
作者
Tian, Gui-Xian [1 ]
Cui, Shu-Yu [2 ]
机构
[1] Zhejiang Normal Univ, Coll Math Phys & Informat Engn, Jinhua 321004, Zhejiang, Peoples R China
[2] Zhejiang Normal Univ, Xingzhi Coll, Jinhua 321004, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Spectral radius of a digraph; Energy of a digraph; Upper bound; SPECTRAL-RADIUS;
D O I
10.1016/j.laa.2013.02.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The energy of a digraph D is defined as E(D) = Sigma(n)(i=1) vertical bar Re(z(i))vertical bar, where z(1), z(2), ... , z(n), are the (possibly complex) eigenvalues of D. In this paper, we first give an improved lower bound on the spectral radius of the digraph D. Using this result, we obtain a new upper bound on the energy E(D) and characterize some extreme digraphs which attain this upper bound. This result theoretically improves and generalizes some known results. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:4742 / 4749
页数:8
相关论文
共 14 条
[1]   The skew energy of a digraph [J].
Adiga, C. ;
Balakrishnan, R. ;
So, Wasin .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (07) :1825-1835
[2]   UPPER BOUND FOR THE ENERGY OF STRONGLY CONNECTED DIGRAPHS [J].
Ayyaswamy, Singaraj K. ;
Balachandran, Selvaraj ;
Gutman, Ivan .
APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2011, 5 (01) :37-45
[3]  
Bermudez A. J., 1994, SAVMA Symposium 1994 Proceedings., P1
[4]   Spectra of digraphs [J].
Brualdi, Richard A. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (09) :2181-2213
[5]  
Cvetkovi DM., 1980, Spectra of Graphs: Theory and Applications
[6]   A lower bound for the spectral radius of a digraph [J].
Gudino, E. ;
Rada, J. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (01) :233-240
[7]   SPECTRAL-RADIUS AND DEGREE SEQUENCE [J].
HOFMEISTER, M .
MATHEMATISCHE NACHRICHTEN, 1988, 139 :37-44
[8]   Sharp upper and lower bounds for largest eigenvalue of the Laplacian matrices of trees [J].
Hong, Y ;
Zhang, XD .
DISCRETE MATHEMATICS, 2005, 296 (2-3) :187-197
[9]  
Li X., 2012, Graph Energy
[10]   Energy of digraphs [J].
Pena, Ismael ;
Rada, Juan .
LINEAR & MULTILINEAR ALGEBRA, 2008, 56 (05) :565-579