Dynamic Electrowetting and Dewetting of Ionic Liquids at a Hydrophobic Solid-Liquid Interface

被引:51
|
作者
Li, Hua [1 ]
Paneru, Mani [1 ]
Sedev, Rossen [1 ]
Ralston, John [1 ]
机构
[1] Univ S Australia, Ian Wark Res Inst, Mawson Lakes 5095, Australia
基金
瑞士国家科学基金会; 澳大利亚研究理事会;
关键词
CONTACT-ANGLE SATURATION; ELECTRICAL DOUBLE-LAYER; ON-A-CHIP; DIFFERENTIAL CAPACITANCE; WETTING KINETICS; SURFACE; DROPLETS; DISPLACEMENT; SPECTROSCOPY; TEMPERATURE;
D O I
10.1021/la304088t
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The dynamic electrowetting and dewetting of ionic liquids are investigated with high-speed video microscopy. Five imidazolium-based ionic liquids ([BMIM]BF4, [BMIM]PF6, [BMIM]NTf2, [HMIM]NTf2, and [OMIM]BF4) are used as probe liquids. Droplets of ionic liquids are first spread on an insulated electrode by applying an external voltage (electrowetting) and then allowed to retract (dewetting) when the voltage is switched off. The base area of the droplet varies exponentially during both the electrowetting and retraction processes. The characteristic time increases with the viscosity of the ionic liquid. The electrowetting and retraction kinetics (dynamic contact angle vs contact line speed) can be described by the hydrodynamic or the molecular-kinetic model. Energy dissipation occurs by viscous and molecular routes with a larger proportion of energy dissipated at the three-phase contact line when the liquid meniscus retracts from the solid surface. The outcomes from this research have implications for the design and control of electro-optical imaging systems, microfluidics, and fuel cells.
引用
收藏
页码:2631 / 2639
页数:9
相关论文
共 50 条
  • [31] Solid-liquid interface energy of silicon
    Jian, Zengyun
    Kuribayashi, Kazuhiko
    Jie, Wanqi
    Chang, Fange
    ACTA MATERIALIA, 2006, 54 (12) : 3227 - 3232
  • [32] Adsorption of nanoparticles at the solid-liquid interface
    Brenner, Thorsten
    Paulus, Michael
    Schroer, Martin A.
    Tiemeyer, Sebastian
    Sternemann, Christian
    Moeller, Johannes
    Tolan, Metin
    Degen, Patrick
    Rehage, Heinz
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2012, 374 : 287 - 290
  • [33] POLYMER ADSORPTION AT SOLID-LIQUID INTERFACE
    KILLMANN, E
    CHEMIE INGENIEUR TECHNIK, 1974, 46 (18) : 767 - 769
  • [34] DYNAMICS OF THE HELIUM SOLID-LIQUID INTERFACE
    THOULOUZE, D
    CASTAING, B
    PUECH, L
    AIP CONFERENCE PROCEEDINGS, 1983, (103) : 357 - 370
  • [35] PHOTOCHEMICAL PROCESSES AT THE SOLID-LIQUID INTERFACE
    KAVANAGH, RJ
    THOMAS, JK
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1994, 208 : 150 - COLL
  • [36] DESCRIPTION OF MELTING AND SOLID-LIQUID INTERFACE
    BOLLING, GF
    CANADIAN METALLURGICAL QUARTERLY, 1969, 8 (02) : 183 - &
  • [37] Immobile layer at the solid-liquid interface
    Bikerman, JJ
    JOURNAL OF CHEMICAL PHYSICS, 1941, 9 (12): : 880 - 880
  • [38] Conditions of compatibility for the solid-liquid interface
    Baldoni, F
    Rajagopal, KR
    QUARTERLY OF APPLIED MATHEMATICS, 1997, 55 (03) : 401 - 420
  • [39] Electrowetting of Aqueous Solutions of Ionic Liquid in Solid-Liquid-Liquid Systems
    Paneru, Mani
    Priest, Craig
    Sedev, Rossen
    Ralston, John
    JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (18): : 8383 - 8388
  • [40] Chemical Identification at the Solid-Liquid Interface
    Soengen, Hagen
    Marutschke, Christoph
    Spijker, Peter
    Holmgren, Eric
    Hermes, Ilka
    Bechstein, Ralf
    Klassen, Stefanie
    Tracey, John
    Foster, Adam S.
    Kuehnle, Angelika
    LANGMUIR, 2017, 33 (01) : 125 - 129