The primary purpose of this study was to test the hypothesis that endurance exercise training induces increased oxidative capacity in porcine skeletal muscle. To test this hypothesis, female miniature swine were either trained by treadmill running 5 days/wk over 16-20 wk (Trn; n = 35) or pen confined (Sed; n = 33). Myocardial hypertrophy, lower heart rates during submaximal stages of a maximal treadmill running test, and increased running time to exhaustion during that test were indicative of training efficacy. A variety of skeletal muscles were sampled and subsequently assayed for the enzymes citrate synthase (CS), 3-hydroxyacyl-CoA dehydrogenase; and lactate dehydrogenase and for antioxidant enzymes. Fiber type composition of are presentative muscle was also determined histochemically. The largest increase in CS activity (62%) was found in the gluteus maximus muscle (Sed, 14.7 +/- 1.1 mu mol.min(-1).g(-1); Tm, 23.9 +/- 1.0; P < 0.0005). Muscles exhibiting increased CS activity, however, were located primarily in the forelimb; ankle and knee extensor and respiratory muscles were unchanged with training. Only two muscles exhibited higher 5-hydroxyacyl-CoA dehydrogenase activity in Tm compared with Sed. Lactate dehydrogenase activity was unchanged with training, as were activities of antioxidant enzymes. Histochemical analysis of the triceps brachii muscle (long head) revealed lower type IIB fiber numbers in Trn (Sed, 42 +/- 6%; Tm, 10 +/- 4; P < 0.01) and greater type IID/X fiber numbers (Sed, 11 +/- 2; Tm, 22 +/- 3; P < 0.025). These findings indicate that porcine skeletal muscle adapts to endurance exercise training in a manner similar to muscle of humans and other animal models, with increased oxidative capacity. Specific muscles exhibiting these adaptations, however, differ between the miniature swine and other species.