MULTIPLE SOLUTIONS FOR A NEUMANN-TYPE DIFFERENTIAL INCLUSION PROBLEM INVOLVING THE p(.)-LAPLACIAN

被引:12
作者
Chinni, Antonia [1 ]
Livrea, Roberto [2 ]
机构
[1] Univ Messina, Fac Engn, Dept Sci Engn & Architecture, Math Sect, I-98166 Messina, Italy
[2] Univ Reggio Calabria, Fac Engn, Dept MECMAT, I-89100 Reggio Di Calabria, Italy
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2012年 / 5卷 / 04期
关键词
p(x)-Laplacian; variable exponent Sobolev space; critical points of locally Lipschitz continuous functionals; differential inclusion problem; three-critical-points theorem; CRITICAL-POINTS; VARIATIONAL PRINCIPLE; ELLIPTIC PROBLEMS; FUNCTIONALS; EXISTENCE;
D O I
10.3934/dcdss.2012.5.753
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using a multiple critical points theorem for locally Lipschitz continuous functionals, we establish the existence of at least three distinct solutions for a Neumann-type differential inclusion problem involving the p(.)-Laplacian.
引用
收藏
页码:753 / 764
页数:12
相关论文
共 25 条
[1]  
[Anonymous], 1990, CLASSICS APPL MATH
[2]   Some remarks on a three critical points theorem [J].
Bonanno, G .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 54 (04) :651-665
[3]   Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities [J].
Bonanno, Gabriele ;
Candito, Pasquale .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 244 (12) :3031-3059
[4]   MULTIPLE SOLUTIONS FOR ELLIPTIC PROBLEMS INVOLVING THE p(x)-LAPLACIAN [J].
Bonanno, Gabriele ;
Chinni, Antonia .
MATEMATICHE, 2011, 66 (01) :105-113
[5]   Discontinuous elliptic problems involving the p(x)-Laplacian [J].
Bonanno, Gabriele ;
Chinni, Antonia .
MATHEMATISCHE NACHRICHTEN, 2011, 284 (5-6) :639-652
[6]   On the structure of the critical set of non-differentiable functions with a weak compactness condition [J].
Bonanno, Gabriele ;
Marano, Salvatore A. .
APPLICABLE ANALYSIS, 2010, 89 (01) :1-10
[7]   Multiple solutions for a Neumann problem involving the p(x)-Laplacian [J].
Cammaroto, F. ;
Chinni, A. ;
Di Bella, B. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (10) :4486-4492
[8]   VARIATIONAL-METHODS FOR NON-DIFFERENTIABLE FUNCTIONALS AND THEIR APPLICATIONS TO PARTIAL-DIFFERENTIAL EQUATIONS [J].
CHANG, KC .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1981, 80 (01) :102-129
[9]   Three solutions for a Neumann-type differential inclusion problem involving the p(x)-Laplacian [J].
Dai, Guowei .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (10) :3755-3760
[10]   Infinitely many solutions for a Neumann-type differential inclusion problem involving the p(x)-Laplacian [J].
Dai, Guowei .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (06) :2297-2305