FDM for Elliptic Equations with Bitsadze-Samarskii-Dirichlet Conditions

被引:13
作者
Ashyralyev, Allaberen [1 ,2 ]
Tetikoglu, Fatma Songul Ozesenli [1 ]
机构
[1] Fatih Univ, Dept Math, TR-34500 Istanbul, Turkey
[2] ITTU, Dept Math, Ashkhabad 74400, Turkmenistan
关键词
BOUNDARY-VALUE-PROBLEMS; WELL-POSEDNESS; SPACES;
D O I
10.1155/2012/454831
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A numerical method is proposed for solving nonlocal boundary value problem for the multidimensional elliptic partial differential equation with the Bitsadze-Samarskii-Dirichlet condition. The first and second-orders of accuracy stable difference schemes for the approximate solution of this nonlocal boundary value problem are presented. The stability estimates, coercivity, and almost coercivity inequalities for solution of these schemes are established. The theoretical statements for the solutions of these nonlocal elliptic problems are supported by results of numerical examples.
引用
收藏
页数:22
相关论文
共 21 条
[1]   Multipoint problems for degenerate abstract differential equations [J].
Agarwal, R. P. ;
Shakhmurov, V. B. .
ACTA MATHEMATICA HUNGARICA, 2009, 123 (1-2) :65-89
[2]  
[Anonymous], 2003, COMPUT METH APPL MAT
[4]  
Ashyralyev A., 2009, FURTHER PROGR ANAL, P698
[6]   On well-posedness of difference schemes for abstract elliptic problems in Lp([0, T]; E) spaces [J].
Ashyralyev, Allaberen ;
Cuevas, Claudio ;
Piskarev, Sergey .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2008, 29 (1-2) :43-65
[7]  
Ashyralyev A, 2010, AIP CONF PROC, V1309, P66, DOI 10.1063/1.3525214
[8]  
BITSADZE AV, 1969, DOKL AKAD NAUK SSSR+, V185, P739
[9]   On a control problem governed by a linear partial differential equation with a smooth functional [J].
Criado-Aldeanueva, F. ;
Criado, F. ;
Odishelidze, N. ;
Sanchez, J. M. .
OPTIMAL CONTROL APPLICATIONS & METHODS, 2010, 31 (06) :497-503
[10]  
Gorbachuk V. L., 1984, BOUNDARY VALUE PROBL