Deep learning models in medical image analysis

被引:105
作者
Tsuneki, Masayuki [1 ,2 ,3 ,4 ]
机构
[1] Medmain Inc, Medmain Res, Fukuoka, Japan
[2] Niigata Univ, Dept Tissue Regenerat & Reconstruct, Div Anat & Cell Biol Hard Tissue, Grad Sch Med & Dent Sci, Niigata, Japan
[3] Medmain Inc, VP Med Res Medmain Res, 2-4-5-104,Chuo ku, Fukuoka 8100042, Japan
[4] 2-4-5-104,Akasaka,Chuo ku, Fukuoka 8100042, Japan
关键词
Medical image analysis; Computer -aided diagnosis; Computer vision; Deep learning; Arti ficial intelligence; CONVOLUTIONAL NEURAL-NETWORKS; CLASSIFICATION; RADIOMICS; ENDOSCOPY;
D O I
10.1016/j.job.2022.03.003
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
Background: Deep learning is a state-of-the-art technology that has rapidly become the method of choice for medical image analysis. Its fast and robust object detection, segmentation, tracking, and classification of pathophysiological anatomical structures can support medical practitioners during routine clinical workflow. Thus, deep learning-based applications for diseases diagnosis will empower physicians and allow fast decision-making in clinical practice. Highlight: Deep learning can be more robust with various features for differentiating classes, provided the training set is large and diverse for analysis. However, sufficient medical images for training sets are not always available from medical institutions, which is one of the major limitations of deep learning in medical image analysis. This review article presents some solutions for this issue and discusses efforts needed to develop robust deep learning-based computer-aided diagnosis applications for better clinical workflow in endoscopy, radiology, pathology, and dentistry. Conclusion: The introduction of deep learning-based applications will enhance the traditional role of medical practitioners in ensuring accurate diagnoses and treatment in terms of precision, reproducibility, and scalability. (c) 2022 Japanese Association for Oral Biology. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:312 / 320
页数:9
相关论文
共 80 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]  
Anirvan Prajna, 2020, Euroasian J Hepatogastroenterol, V10, P92, DOI 10.5005/jp-journals-10018-1322
[3]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[4]   Machine and deep learning methods for radiomics [J].
Avanzo, Michele ;
Wei, Lise ;
Stancanello, Joseph ;
Vallieres, Martin ;
Rao, Arvind ;
Morin, Olivier ;
Mattonen, Sarah A. ;
El Naqa, Issam .
MEDICAL PHYSICS, 2020, 47 (05) :E185-E202
[5]   Digital pathology and artificial intelligence in translational medicine and clinical practice [J].
Baxi, Vipul ;
Edwards, Robin ;
Montalto, Michael ;
Saha, Saurabh .
MODERN PATHOLOGY, 2022, 35 (01) :23-32
[6]   A deep learning approach for dental implant planning in cone-beam computed tomography images [J].
Bayrakdar, Sevda Kurt ;
Orhan, Kaan ;
Bayrakdar, Ibrahim Sevki ;
Bilgir, Elif ;
Ezhov, Matvey ;
Gusarev, Maxim ;
Shumilov, Eugene .
BMC MEDICAL IMAGING, 2021, 21 (01)
[7]   The Use and Performance of Artificial Intelligence in Prosthodontics: A Systematic Review [J].
Bernauer, Selina A. ;
Zitzmann, Nicola U. ;
Joda, Tim .
SENSORS, 2021, 21 (19)
[8]  
Cai YW, 2021, WORLD J CLIN CASES, V9, P9376, DOI [10.12998/wjcc.v9.i31.9376, 10.1299841/wjcc/v.i31.9376]
[9]   Deep learning for chest X-ray analysis: A survey [J].
calli, Erdi ;
Sogancioglu, Ecem ;
van Ginneken, Bram ;
van Leeuwen, Kicky G. ;
Murphy, Keelin .
MEDICAL IMAGE ANALYSIS, 2021, 72 (72)
[10]   Clinical-grade computational pathology using weakly supervised deep learning on whole slide images [J].
Campanella, Gabriele ;
Hanna, Matthew G. ;
Geneslaw, Luke ;
Miraflor, Allen ;
Silva, Vitor Werneck Krauss ;
Busam, Klaus J. ;
Brogi, Edi ;
Reuter, Victor E. ;
Klimstra, David S. ;
Fuchs, Thomas J. .
NATURE MEDICINE, 2019, 25 (08) :1301-+