Suppression of the lithium-ion battery thermal runaway during quantitative-qualitative change

被引:1
|
作者
Tang, W. [1 ]
Xu, X. M. [1 ]
Li, R. Z. [1 ]
Jin, H. F. [2 ]
Cao, L. D. [2 ]
Wang, H. M. [2 ]
机构
[1] Jiangsu Univ, Sch Automot & Traff Engn, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Tian Jin Li Shen Battery Joint Stock Co Ltd, Tianjin 300384, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; Thermal runaway suppression; Temperature distribution; Side reaction; Temperature rise; Heat generation; LINI1/3MN1/3CO1/3O2 CATHODE MATERIAL; HIGH-POWER; BEHAVIOR; MODEL; MANAGEMENT; SAFETY; CELLS; FIRE;
D O I
10.1007/s11581-020-03745-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Thermal runaway is the most important safety problem of the lithium-ion battery. A thermal model-combined four side reactions is established to simulate suppression of the thermal runaway of a lithium-ion battery, and the effect of suppression starting time is analyzed to further reveal the thermal runaway suppression mechanism. The results show that thermal runaway is triggered by the heat generation of negative material reaction when it is heated with 473.15 K, and heat dissipation in the bottom part of negative electrode material at 293.15 K can effectively inhibit the occurrence of thermal runaway before solid electrolyte interface (SEI) decomposition reaction starts. In addition, the suppression of runaway battery heat is to suppress the negative electrode material reaction actually, and when the heat is dissipated at 293.15 K, it could be conducted before the SEI decomposition reaction starts, which has nothing to do with the advance time.
引用
收藏
页码:6133 / 6143
页数:11
相关论文
共 50 条
  • [1] Suppression of the lithium-ion battery thermal runaway during quantitative-qualitative change
    W. Tang
    X. M. Xu
    R. Z. Li
    H. F. Jin
    L. D. Cao
    H. M. Wang
    Ionics, 2020, 26 : 6133 - 6143
  • [2] A comprehensive study on heat transfer mechanism and thermal runaway suppression of the lithium-ion battery
    Sun, Tao
    Yan, Yulong
    Wang, Xinhua
    Rasool, Ghulam
    Zhang, Kai
    Li, Tie
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2025, 245
  • [3] Study on the suppression of thermal runaway of lithium-ion battery by water mist with different additives
    Li, Lixia
    Chen, Zhen
    Lu, Yuan
    Zang, Pengju
    Zhan, Wang
    Cheng, Yuhe
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2023, 45 (04) : 11349 - 11362
  • [4] Versatile multiphysics model for thermal runaway estimation of a lithium-ion battery
    Kim, Jun-Hyeong
    Kwak, Eunji
    Jeong, Jinho
    Oh, Ki-Yong
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (12) : 16550 - 16575
  • [5] Probing the thermal runaway triggering process within a lithium-ion battery cell with local heating
    Xu, X. M.
    Li, R. Z.
    Zhao, L.
    Hu, D. H.
    Wang, J.
    AIP ADVANCES, 2018, 8 (10)
  • [6] Quantitative Analysis of Lithium-Ion Battery Eruption Behavior in Thermal Runaway
    Xing, Yu
    Wei, Ningning
    Li, Minghai
    BATTERIES-BASEL, 2024, 10 (06):
  • [7] Experimental Analysis of Thermal Runaway and Propagation in Lithium-Ion Battery Modules
    Lopez, Carlos F.
    Jeevarajan, Judith A.
    Mukherjee, Partha P.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (09) : A1905 - A1915
  • [8] Thermal Runaway Propagation Analytics and Crosstalk in Lithium-Ion Battery Modules
    Karmakar, Avijit
    Zhou, Hanwei
    Vishnugopi, Bairav S.
    Mukherjee, Partha P.
    ENERGY TECHNOLOGY, 2024, 12 (02)
  • [9] Numerical Study on the Inhibition Control of Lithium-Ion Battery Thermal Runaway
    Hu, Hao
    Xu, Xiaoming
    Sun, Xudong
    Li, Renzheng
    Zhang, Yangjun
    Fu, Jiaqi
    ACS OMEGA, 2020, 5 (29): : 18254 - 18261
  • [10] Effects of the battery enclosure on the thermal behaviors of lithium-ion battery module during thermal runaway propagation by external-heating
    Li, Zijian
    Guo, Yinliang
    Zhang, Peihong
    JOURNAL OF ENERGY STORAGE, 2022, 48