A Two-Level Sparse Grid Collocation Method for Semilinear Stochastic Elliptic Equation

被引:0
作者
Chen, Luoping [1 ]
Chen, Yanping [2 ]
Liu, Xiong [3 ]
机构
[1] Southwest Jiaotong Univ, Sch Math, Chengdu 611756, Sichuan, Peoples R China
[2] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[3] Lingnan Normal Univ, Sch Math & Stat, Zhanjiang 524048, Peoples R China
基金
中国国家自然科学基金;
关键词
Stochastic Collocation Method; Finite Element Method; Semilinear Equation; Convergence Analysis; PARTIAL-DIFFERENTIAL-EQUATIONS; NAVIER-STOKES EQUATIONS; 2-GRID DISCRETIZATION SCHEME; GENERALIZED POLYNOMIAL CHAOS; REACTION-DIFFUSION EQUATIONS; RANDOM INPUT DATA; EIGENVALUE PROBLEMS; PROJECTION METHOD; GALERKIN METHODS; FLUID-FLOW;
D O I
10.1515/cmam-2017-0025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we investigate a novel two-level discretization method for the elliptic equations with random input data. Motivated by the two-grid method for deterministic nonlinear partial differential equations introduced by Xu [36], our two-level discretization method uses a two-grid finite element method in the physical space and a two-scale stochastic collocation method with sparse grid in the random domain. Specifically, we solve a semilinear equations on a coarse mesh T-H(D) with small scale of sparse collocation points eta(L, N) and solve a linearized equations on a fine mesh T h(D) using large scale of sparse collocation points eta(l, N) (where eta(L, N), eta(l, N) are the numbers of sparse grid with respect to different levels L, l in N dimensions). Moreover, an error correction on the coarse mesh with large scale of collocation points is used in the method. Theoretical results show that when h approximate to H-3, eta(l, N) approximate to (eta(L, N))(3), the novel two-level discretization method achieves the same convergence accuracy in norm parallel to center dot parallel to(L rho 2(Gamma)circle times L2(D)) (L-rho(2)(Gamma) is the weighted L-2 space with rho a probability density function) as that for the original semilinear problem directly by sparse grid stochastic collocation method with T-h(D) and large scale collocation points eta(l, N) in random spaces.
引用
收藏
页码:165 / 179
页数:15
相关论文
共 41 条
  • [11] A two-grid discretization scheme for semilinear elliptic eigenvalue problems
    Chien, CS
    Jeng, BW
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 27 (04) : 1287 - 1304
  • [12] Dawson C.N., 1994, Contemp. Math, V180, P191
  • [13] A two-grid finite difference scheme for nonlinear parabolic equations
    Dawson, CN
    Wheeler, MF
    Woodward, CS
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (02) : 435 - 452
  • [14] Numerical integration using sparse grids
    Gerstner, T
    Griebel, M
    [J]. NUMERICAL ALGORITHMS, 1998, 18 (3-4) : 209 - 232
  • [15] Ghanem R., 1991, STOCHASTIC FINITE EL, VVolume 1, P1, DOI [10.1007/978-1-4612-3094-6, DOI 10.1007/978-1-4612-3094-6]
  • [16] Girault V., 2001, Portugaliae Mathematica, V58, P25
  • [17] Hosder S., 2006, 44 AIAA AEROSPACE SC, P891, DOI [10.2514/6.2006-891, DOI 10.2514/6.2006-891]
  • [18] Klimke A., 2007, 2007017 IANS U STUTT
  • [19] A two-level method with backtracking for the Navier-Stokes equations
    Layton, W
    Tobiska, L
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (05) : 2035 - 2054
  • [20] 2-LEVEL PICARD AND MODIFIED PICARD METHODS FOR THE NAVIER-STOKES EQUATIONS
    LAYTON, W
    LENFERINK, W
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 1995, 69 (2-3) : 263 - 274