Comparison of some tests of fit for the Laplace distribution

被引:7
作者
Best, D. J. [1 ]
Rayner, J. C. W. [1 ]
Thas, O. [2 ]
机构
[1] Univ Newcastle, Sch Math & Phys Sci, Callaghan, NSW 2308, Australia
[2] Univ Ghent, Dept Appl Math Bametr & Proc Control, B-9000 Ghent, Belgium
关键词
D O I
10.1016/j.csda.2008.05.023
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Tests for the Laplace distribution based on the sample skewness and kurtosis coefficients are shown to be related to components of smooth tests of goodness of fit and are compared with a number of tests including the Anderson-Darling test, a new data-driven smooth test, a new empirical characteristic function based test and a new maximum entropy test. This last would be our slight preference as the test of choice for testing for the Laplace distribution. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:5338 / 5343
页数:6
相关论文
共 23 条
[1]   INTERVAL ESTIMATION FOR 2-PARAMETER DOUBLE EXPONENTIAL DISTRIBUTION [J].
BAIN, LJ ;
ENGELHAR.M .
TECHNOMETRICS, 1973, 15 (04) :875-887
[2]  
Chen C, 2002, COMMUN STAT-SIMUL C, V31, P159
[3]   Testing goodness-of-fit for Laplace distribution based on maximum entropy [J].
Choi, Byungjin ;
Kim, Keeyoung .
STATISTICS, 2006, 40 (06) :517-531
[4]   Goodness of fit via non-parametric likelihood ratios [J].
Claeskens, G ;
Hjort, NL .
SCANDINAVIAN JOURNAL OF STATISTICS, 2004, 31 (04) :487-513
[5]   ON IMPROVING DENSITY ESTIMATORS WHICH ARE NOT BONA-FIDE FUNCTIONS [J].
GAJEK, L .
ANNALS OF STATISTICS, 1986, 14 (04) :1612-1618
[6]   SOME ANALYTICAL PROPERTIES OF BIVARIATE EXTREMAL DISTRIBUTIONS [J].
GUMBEL, EJ ;
MUSTAFI, CK .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1967, 62 (318) :569-&
[7]   Recent and classical goodness-of-fit tests for the Poisson distribution [J].
Gürtler, N ;
Henze, N .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2000, 90 (02) :207-225
[8]   TEST OF GOODNESS OF FIT FOR SYMMETRIC RANDOM-VARIABLES [J].
HEATHCOTE, CR .
AUSTRALIAN JOURNAL OF STATISTICS, 1972, 14 (02) :172-181
[9]  
HENZE N, 1996, AUSTRAL J STAT, V38, P61
[10]  
*IMSL, 1995, FORTR NUM LIBR VIS N