EDGE BIPARTITENESS AND SIGNLESS LAPLACIAN SPREAD OF GRAPHS

被引:11
作者
Fan, Yi-Zheng [1 ]
Fallat, Shaun [2 ]
机构
[1] Anhui Univ, Sch Math Sci, Hefei 230039, Peoples R China
[2] Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
Graph; edge bipartiteness; signless Laplacian matrix; spread; LEAST EIGENVALUE; UNICYCLIC GRAPHS; SPECTRUM;
D O I
10.2298/AADM120127003F
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a connected graph, and let epsilon(b)(G) and S-Q(C) be the edge bipartiteness and the signless Laplacian spread of G, respectively. We establish some important relationships between epsilon(b)(G) and S-Q(G), and prove S-Q (G) >= 2(1 + cos pi/n), with equality if and only if G = P-n or G = C-n in case of odd n. In addition, we show that if G not equal P-n or G not equal C2k+1, then S-Q(G) >= 4, with equality if and only if G is one of the following graphs: K-1,K-3, K-4, two triangles connected by an edge, and C-n for even n. As a consequence, we prove a conjecture of CVETKOVIC, ROWLINSON and SIMIC on minimal signless Laplacian spread [Eigenvalue bounds for the signless Laplacian, Publ. Inst. Math. (Beograd), 81 (95) (2007), 11-27].
引用
收藏
页码:31 / 45
页数:15
相关论文
共 31 条
[1]   The Laplacian spread of unicyclic graphs [J].
Bao, Yan-Hong ;
Tan, Ying-Ying ;
Fan, Yi-Zheng .
APPLIED MATHEMATICS LETTERS, 2009, 22 (07) :1011-1015
[2]  
Bapat RB., 1999, Linear Multilinear Algebra, V46, P299, DOI [10.1080/03081089908818623, DOI 10.1080/03081089908818623]
[3]  
[Chen Yan 陈晏], 2002, Applied Mathematics. Series B, A Journal of Chinese Universities, V17, P371
[4]  
Chen YQ, 2009, ELECTRON J COMB, V16
[5]   EIGENVALUE BOUNDS FOR THE SIGNLESS LAPLACIAN [J].
Cvetkovic, Dragos ;
Rowlinson, Peter ;
Simic, Slobodan .
PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2007, 81 (95) :11-27
[6]   Signless Laplacians of finite graphs [J].
Cvetkovic, Dragos ;
Rowlinson, Peter ;
Simic, Slobodan K. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 423 (01) :155-171
[7]   Proof of conjectures involving the largest and the smallest signless Laplacian eigenvalues of graphs [J].
Das, Kinkar Ch .
DISCRETE MATHEMATICS, 2012, 312 (05) :992-998
[8]   On conjectures involving second largest signless Laplacian eigenvalue of graphs [J].
Das, Kinkar Ch. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (11) :3018-3029
[9]   The smallest eigenvalue of the signless Laplacian [J].
de Lima, Leonardo Silva ;
Oliveira, Carla Silva ;
Maia de Abreu, Nair Maria ;
Nikiforov, Vladimir .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (10) :2570-2584
[10]   Bipartiteness and the least eigenvalue of signless Laplacian of graphs [J].
Fallat, Shaun ;
Fan, Yi-Zheng .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (09) :3254-3267