Matlis reflexive modules on complete rings

被引:1
作者
Jara, P
Santos, E
机构
[1] Department of Algebra, University of Granada
关键词
D O I
10.1016/0022-4049(95)00012-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we relate the completion introduced in [Bueso et al. (1994)] with the double dual, proving that if M is a sigma-finitely generated R-module, then both notions coincide. In the case of a complete ring we prove a structure theorem for reflexive modules and as a subproduct we obtain that every reflexive module is complete.
引用
收藏
页码:77 / 91
页数:15
相关论文
共 15 条
[1]  
AOYAMA K, 1976, HIROSHIMA MATH J, V6, P527
[2]   INJECTIVE MODULES OVER A KRULL DOMAIN [J].
BECK, I .
JOURNAL OF ALGEBRA, 1971, 17 (01) :116-&
[3]   THE NATURAL TOPOLOGY OF MATLIS REFLEXIVE MODULES [J].
BELSHOFF, R .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1993, 47 (01) :149-154
[4]   DUALITY, LOCALIZATION AND COMPLETION [J].
BUESO, JL ;
JARA, P ;
VERSCHOREN, A .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1994, 94 (02) :127-141
[5]   COMPLETION [J].
BUESO, JL ;
JARA, P ;
SANTOS, E .
COMMUNICATIONS IN ALGEBRA, 1994, 22 (03) :969-987
[6]  
BUESO JL, 1984, METHODS RING THEORY, P53
[7]  
BUESO JL, 1990, PITMAN RES NOTES MAT, V226
[8]   FLAT COVERS AND FLAT COTORSION MODULES [J].
ENOCHS, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 92 (02) :179-184
[9]  
FOSSUM R, 1971, MATH SOC, V25, P233
[10]  
Golan J., 1986, Torsion Theories