A High-Performance Magnetic Shield with MnZn Ferrite and Mu-Metal Film Combination for Atomic Sensors

被引:12
作者
Fang, Xiujie [1 ,2 ,3 ]
Ma, Danyue [1 ,2 ,3 ]
Sun, Bowen [2 ,3 ]
Xu, Xueping [2 ,3 ]
Quan, Wei [2 ,3 ]
Xiao, Zhisong [1 ]
Zhai, Yueyang [2 ,3 ]
机构
[1] Beihang Univ, Sch Phys, Beijing 100191, Peoples R China
[2] Beihang Univ, Zhejiang Prov Key Lab Ultraweak Magnet Field Spac, Hangzhou Innovat Inst, Hangzhou 310000, Peoples R China
[3] Beihang Univ, Sch Instrumentat & Optoelect Engn, Key Lab Ultraweak Magnet Field Measurement Techno, Minist Educ, Beijing 100191, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
MnZn ferrite; mu-metal film; magnetic shield; magnetic noise; atomic sensors; MAGNETOMETER;
D O I
10.3390/ma15196680
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study proposes a high-performance magnetic shielding structure composed of MnZn ferrite and mu-metal film. The use of the mu-metal film with a high magnetic permeability restrains the decrease in the magnetic shielding coefficient caused by the magnetic leakage between the gap of magnetic annuli. The 0.1-0.5 mm thickness of mu-metal film prevents the increase of magnetic noise of composite structure. The finite element simulation results show that the magnetic shielding coefficient and magnetic noise are almost unchanged with the increase in the gap width. Compared with conventional ferrite magnetic shields with multiple annuli structures under the gap width of 0.5 mm, the radial shielding coefficient increases by 13.2%, and the magnetic noise decreases by 21%. The axial shielding coefficient increases by 22.3 times. Experiments verify the simulation results of the shielding coefficient of the combined magnetic shield. The shielding coefficient of the combined magnetic shield is 16.5%. It is 91.3% higher than the conventional ferrite magnetic shield. The main difference is observed between the actual and simulated relative permeability of mu-metal films. The combined magnetic shielding proposed in this study is of great significance to further promote the performance of atomic sensors sensitive to magnetic field.
引用
收藏
页数:11
相关论文
共 27 条
[1]  
Bevan D., 2018, 2018 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL), P1, DOI [10.1109/ISISS.2018.8358161, DOI 10.1109/ISISS.2018.8358161]
[2]  
Chalkov V. V., 2020, Journal of Physics: Conference Series, V1536, DOI [10.1088/1742-6596/1536/1/012013, 10.1088/1742-6596/1536/1/012013]
[3]   Single beam Cs-Ne SERF atomic magnetometer with the laser power differential method [J].
Chen, Yao ;
Zhao, Libo ;
Zhang, Ning ;
Yu, Mingzhi ;
Ma, Yintao ;
Han, Xiangguang ;
Zhao, Man ;
Lin, Qijing ;
Yang, Ping ;
Jiang, Zhuangde .
OPTICS EXPRESS, 2022, 30 (10) :16541-16552
[4]   Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer [J].
Dang, H. B. ;
Maloof, A. C. ;
Romalis, M. V. .
APPLIED PHYSICS LETTERS, 2010, 97 (15)
[5]  
Eshraghi M.J., 2009, ANN REP RISS, V6, P77
[6]   Suppression of the Bias Error Induced by Magnetic Noise in a Spin-Exchange Relaxation-Free Gyroscope [J].
Fan, Wenfeng ;
Quan, Wei ;
Liu, Feng ;
Xing, Li ;
Li, Gang .
IEEE SENSORS JOURNAL, 2019, 19 (21) :9712-9721
[7]   A proposal for detection of absolute rotation using superconductors and large voltages [J].
Forgan, E. M. ;
Muirhead, C. M. ;
Rae, A. I. M. ;
Speake, C. C. .
PHYSICS LETTERS A, 2021, 386
[8]   A nanocrystalline shield for high precision co-magnetometer operated in spin-exchange relaxation-free regime [J].
Fu, Yang ;
Sun, Jinji ;
Ruan, Jiasen ;
Quan, Wei .
SENSORS AND ACTUATORS A-PHYSICAL, 2022, 339
[9]   A high-performance compact magnetic shield for optically pumped magnetometer-based magnetoencephalography [J].
He, Kaiyan ;
Wan, Shuangai ;
Sheng, Jingwei ;
Liu, Dongsu ;
Wang, Chune ;
Li, Dongxu ;
Qin, Lang ;
Luo, Shen ;
Qin, Jie ;
Gao, Jia-Hong .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2019, 90 (06)
[10]  
Jin X.Q., 2005, J MAGN MAT DEVICES, V36, P54