Rapid fabrication of curved microlens array using the 3D printing mold

被引:17
|
作者
Luo, Jiasai [1 ]
Guo, Yongcai [1 ]
Wang, Xin [1 ]
机构
[1] Chongqing Univ, Key Lab Optoelect Technol & Syst, Minist Educ China, 174 Shazheng St, Chongqing 400044, Peoples R China
来源
OPTIK | 2018年 / 156卷
基金
高等学校博士学科点专项科研基金;
关键词
Optical design and fabrication; Micro-optics; 3D printing; Microlens array; Compound eyes;
D O I
10.1016/j.ijleo.2017.11.197
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we presented a new method to directly fabricate 3D microlens array (MLA) without the pattern transfer and substrate reshaping process. Gas-assist deformed concave Polydimethylsiloxane (PDMS) film was used as the molding template. The template was fixed on the curved micro-hole array with a micro cavity during the injection molding process. The curved micro-hole array was fabricated by 3D printing in order to avoid the interference from microlens nearby. In addition, the micro-hole array is detachable, thus allowing it to be assembled onto the MLA automatically. Less than few minutes, the formation of 3D MLA can be realized by which the polymeric lens material is capable of being cured within dozens of seconds. Multi-focusing MLA was designed to reduce the defocus. And the focal length of each microlens varied according to the different diameter of micro holes. This novel method is time-saving, cost-effective and precision. A single microlens has a radius of 250-500 mu m, and the accuracy can reach 30 mu m. Performance of the 3D MLA has been optically characterized. The introduction of micro-holes array can effectively reduce the crosstalk between the eyes and the influence of stray light. The curved MLA have has a FOV over 70 degrees. (C) 2017 Elsevier GmbH. All rights reserved.
引用
收藏
页码:556 / 563
页数:8
相关论文
共 50 条
  • [41] Fabrication of Origami Soft Gripper Using On-Fabric 3D Printing
    Choi, Hana
    Park, Tongil
    Hwang, Gyomin
    Ko, Youngji
    Lee, Dohun
    Lee, Taeksu
    Park, Jong-Oh
    Bang, Doyeon
    ROBOTICS, 2023, 12 (06)
  • [42] Design, fabrication, and testing of a helical antenna using 3D printing technology
    Ghassemiparvin, Behnam
    Ghalichechian, Nima
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2020, 62 (04) : 1577 - 1580
  • [43] Beyond Rapid Prototyping: Study of prospects and challenges of 3D printing in functional part fabrication
    Lemu, Hirpa G.
    Proceedings of the 6th International Workshop of Advanced Manufacturing and Automation, 2016, 24 : 138 - 143
  • [44] Rapid Fabrication of Large-Area Concave Microlens Array on ZnSe
    Zhang, Fan
    Yang, Qing
    Bian, Hao
    Hou, Xun
    Chen, Feng
    MICROMACHINES, 2021, 12 (04)
  • [45] Fabrication of nanocellulose/PEGDA hydrogel by 3D printing
    Tang, Aimin
    Wang, Qinwen
    Zhao, Shan
    Liu, Wangyu
    RAPID PROTOTYPING JOURNAL, 2018, 24 (08) : 1265 - 1271
  • [46] An Overview of 3D Printing Technologies for Food Fabrication
    Jie Sun
    Weibiao Zhou
    Dejian Huang
    Jerry Y. H. Fuh
    Geok Soon Hong
    Food and Bioprocess Technology, 2015, 8 : 1605 - 1615
  • [47] Fabrication of Graded Structures by Extrusion 3D Printing
    Giannatsis, J.
    Vassilakos, A.
    Canellidis, V.
    Dedoussis, V.
    2015 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEM), 2015, : 175 - 179
  • [48] Use of 3D printing in astronomical mirror fabrication
    Roulet, Melanie
    Atkins, Carolyn
    Hugot, Emmanuel
    Snell, Rob
    van de Vorst, Bart
    Morris, Katherine
    Marcos, Michel
    Todd, Iain
    Miller, Christopher
    Dufils, Joris
    Farkas, Szigfrid
    Mezo, Gyorgy
    Tenegi, Fabio
    Vega-Moreno, Afrodisio
    Schnelter, Hermine
    3D PRINTED OPTICS AND ADDITIVE PHOTONIC MANUFACTURING II, 2020, 11349
  • [49] 3D Printing Integrated Fabrication of CathodeHeater Assembly
    Sun, Xin
    Shao, Wensheng
    Yang, Huaichao
    2019 INTERNATIONAL VACUUM ELECTRONICS CONFERENCE (IVEC), 2019,
  • [50] Fabrication of ZnO periodic structures by 3D printing
    Tubio, Carmen R.
    Guitian, Francisco
    Gil, Alvaro
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2016, 36 (14) : 3409 - 3415