Learning adaptively windowed correlation filters for robust tracking

被引:15
作者
Kuai, Yangliu [1 ]
Wen, Gongjian [1 ]
Li, Dongdong [1 ]
机构
[1] Natl Univ Def Technol, Coll Elect Sci, Changsha, Hunan, Peoples R China
关键词
Correlation filter; Target likelihood; Window adaptation; OBJECT TRACKING;
D O I
10.1016/j.jvcir.2018.01.008
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Visual tracking is a fundamental component for high-level video understanding problems such as motion analysis, event detection and action recognition. Recently, Discriminative Correlation Filters (DCF) have achieved enormous popularity in the tracking community due to high computational efficiency and fair robustness. However, the underlying boundary effect of DCF leads to a very restricted target search region at the detection step. Generally, a larger search area is adopted to overcome this disadvantage. Such an expansion of search area usually includes substantial amount of background information which will contaminate the tracking model in realist tracking scenarios. To alleviate this major drawback, we propose a generic DCF tracking framework which suppresses background information and highlights the foreground object with an object likelihood map computed from the color histograms. This object likelihood map is merged with the cosine window and then integrated into the DCF formulation. Therefore, DCF are less burdened in the training step by focusing more on pixels with higher object likelihood probability. Extensive experiments on the OTB50 and OTB100 benchmarks demonstrate that our adaptively windowed tracking framework can be combined with many DCF trackers and achieves significant performance improvement.
引用
收藏
页码:104 / 111
页数:8
相关论文
共 24 条
  • [1] Staple: Complementary Learners for Real-Time Tracking
    Bertinetto, Luca
    Valmadre, Jack
    Golodetz, Stuart
    Miksik, Ondrej
    Torr, Philip H. S.
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 1401 - 1409
  • [2] Bolme DS, 2010, PROC CVPR IEEE, P2544, DOI 10.1109/CVPR.2010.5539960
  • [3] Mean shift: A robust approach toward feature space analysis
    Comaniciu, D
    Meer, P
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (05) : 603 - 619
  • [4] Histograms of oriented gradients for human detection
    Dalal, N
    Triggs, B
    [J]. 2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, : 886 - 893
  • [5] Danelljan M., 2014, Proceedings of the British Machine Vision Conference (BMVC), P1
  • [6] ECO: Efficient Convolution Operators for Tracking
    Danelljan, Martin
    Bhat, Goutam
    Khan, Fahad Shahbaz
    Felsberg, Michael
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 6931 - 6939
  • [7] Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking
    Danelljan, Martin
    Robinson, Andreas
    Khan, Fahad Shahbaz
    Felsberg, Michael
    [J]. COMPUTER VISION - ECCV 2016, PT V, 2016, 9909 : 472 - 488
  • [8] Learning Spatially Regularized Correlation Filters for Visual Tracking
    Danelljan, Martin
    Hager, Gustav
    Khan, Fahad Shahbaz
    Felsberg, Michael
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 4310 - 4318
  • [9] PixelTrack: a fast adaptive algorithm for tracking non-rigid objects
    Duffner, Stefan
    Garcia, Christophe
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, : 2480 - 2487
  • [10] Galoogahi H. K., ABS170304590 CORR