A quasi-linear algorithm for calculating the infimal convolution of convex quadratic functions

被引:0
作者
Bayon, L. [1 ]
Grau, J. M. [1 ]
Ruiz, M. M. [1 ]
Suarez, P. M. [1 ]
机构
[1] Univ Oviedo, Dept Matemat, Gijon, Spain
关键词
Algorithm complexity; Infimal convolution; Quadratic programming; PROGRAMMING PROBLEMS; OPTIMIZATION;
D O I
10.1016/j.cam.2011.04.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present an algorithm of quasi-linear complexity to exactly calculate the infimal convolution of convex quadratic functions. The algorithm exactly and simultaneously solves a separable uniparametric family of quadratic programming problems resulting from varying the equality constraint. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:2990 / 2997
页数:8
相关论文
共 10 条
[1]  
Audet C, 2003, NONCONVEX OPTIM, V74, P25
[2]   New developments on equivalent thermal in hydrothermal optimization:: an algorithm of approximation [J].
Bayón, L ;
Grau, JM ;
Ruiz, MM ;
Suárez, R .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 175 (01) :63-75
[3]   AN ANALYTIC SOLUTION FOR SOME SEPARABLE CONVEX QUADRATIC PROGRAMMING PROBLEMS WITH EQUALITY AND INEQUALITY CONSTRAINTS [J].
Bayon, L. ;
Grau, J. M. ;
Ruiz, M. M. ;
Suarez, P. M. .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2010, 4 (03) :453-465
[4]   A new formulation of the equivalent thermal in optimization of hydrothermal systems [J].
Bayón, L ;
Grau, JM ;
Suárez, P .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2002, 8 (03) :181-196
[5]   STRONGLY POLYNOMIAL ALGORITHMS FOR THE QUADRATIC TRANSPORTATION PROBLEM WITH A FIXED NUMBER OF SOURCES [J].
COSARES, S ;
HOCHBAUM, DS .
MATHEMATICS OF OPERATIONS RESEARCH, 1994, 19 (01) :94-111
[6]  
Gould N. I. M., 2001, QUADRATIC PROGRAMMIN
[7]   Exact solutions of some nonconvex quadratic optimization problems via SDP and SOCP relaxations [J].
Kim, SY ;
Kojima, M .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2003, 26 (02) :143-154
[8]  
MOREAU JJ, 1970, J MATH PURE APPL, V49, P109
[9]  
Rockafellar R. T., 1970, Convex Analysis
[10]  
Stromberg T., 1996, DIDD MATH, V352