A continuum of solutions for the SU(3) Toda System exhibiting partial blow-up

被引:5
|
作者
D'Aprile, Teresa [1 ]
Pistoia, Angela [2 ]
Ruiz, David [3 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[2] Univ Roma La Sapienza, Dipartimento SBAI, I-00161 Rome, Italy
[3] Univ Granada, Dept Math Anal, Granada 18071, Spain
关键词
ANALYTIC ASPECTS; SINGULAR LIMITS; EXISTENCE; EQUATIONS; BEHAVIOR;
D O I
10.1112/plms/pdv042
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the so-called Toda System in planar domains under Dirichlet boundary condition. We show the existence of continua of solutions for which one component is blowing-up at a certain number of points. The proofs use singular perturbation methods.
引用
收藏
页码:797 / 830
页数:34
相关论文
共 50 条
  • [1] Asymmetric blow-up for the SU(3) Toda system
    D'Aprile, Teresa
    Pistoia, Angela
    Ruiz, David
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (03) : 495 - 531
  • [2] New blow-up phenomena for SU(n+1) Toda system
    Musso, Monica
    Pistoia, Angela
    Wei, Juncheng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (07) : 6232 - 6266
  • [3] Blow-up criteria of smooth solutions for magnetic Benard system with partial viscosity
    Ma, Liangliang
    Ji, Ruihong
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 346 : 816 - 831
  • [4] Existence and boundary blow-up rates of solutions for boundary blow-up elliptic systems
    Wang, Mingxin
    Wei, Lei
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (5-6) : 2022 - 2032
  • [5] Boundedness and blow-up of solutions for a nonlinear elliptic system
    Covei, Dragos-Patru
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2014, 25 (09)
  • [6] The blow-up analysis of an affine Toda system corresponding to superconformal minimal surfaces in S4
    Liu, Lei
    Wang, Guofang
    JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 281 (09)
  • [7] On decay and blow-up of solutions for a system of equations
    He, Luofei
    APPLICABLE ANALYSIS, 2021, 100 (11) : 2449 - 2477
  • [8] New concentration phenomena for SU(3) Toda system
    Ao, Weiwei
    Wang, Liping
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (04) : 1548 - 1580
  • [9] Uniqueness of minimal blow-up solutions to nonlinear Schrodinger system
    Su, Yiming
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 155 : 186 - 197
  • [10] Blow-up solutions to nonlinear Schrodinger system at multiple points
    Su, Yiming
    Guo, Qing
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (01):