Optimal sensor selection for model identification in iterative learning control of spatio-temporal systems
被引:0
作者:
Kowalow, Damian
论文数: 0引用数: 0
h-index: 0
机构:
Univ Zielona Gora, Inst Control & Computat Engn, Ul Podgorna 50, PL-65246 Zielona Gora, PolandUniv Zielona Gora, Inst Control & Computat Engn, Ul Podgorna 50, PL-65246 Zielona Gora, Poland
Kowalow, Damian
[1
]
Patan, Maciej
论文数: 0引用数: 0
h-index: 0
机构:
Univ Zielona Gora, Inst Control & Computat Engn, Ul Podgorna 50, PL-65246 Zielona Gora, PolandUniv Zielona Gora, Inst Control & Computat Engn, Ul Podgorna 50, PL-65246 Zielona Gora, Poland
Patan, Maciej
[1
]
机构:
[1] Univ Zielona Gora, Inst Control & Computat Engn, Ul Podgorna 50, PL-65246 Zielona Gora, Poland
来源:
2016 21ST INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR)
|
2016年
关键词:
PARAMETER-ESTIMATION;
DISTRIBUTED SYSTEMS;
FAULT-DETECTION;
CONTROL DESIGN;
NETWORK;
LOCALIZATION;
MACHINE;
D O I:
暂无
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
An approach to sensor location problem for parameter estimation of a distributed system controlled under repetitive regime is presented. In order to reduce the uncertainty of the model used for the control design, thus increasing the system performance, the iterative learning control scheme is extended with parameter estimation of mathematical model with the use of the sequential experimental design. The related sensor location problem corresponds to situation where from among all potential sites where the sensors can be placed we have to select a subset which provide the most informative measurements in order to update the system parameter estimates. Thus, in each process trial, both the control performance and process model can be substantially improved. As an illustration of the proposed approach the application to nontrivial chemical process of fuel combustion is given.