Anti-synchronization between identical and non-identical fractional-order chaotic systems using active control method

被引:88
作者
Srivastava, M. [1 ]
Ansari, S. P. [1 ]
Agrawal, S. K. [1 ]
Das, S. [1 ]
Leung, A. Y. T. [2 ]
机构
[1] Indian Inst Technol BHU, Dept Math Sci, Varanasi 221005, Uttar Pradesh, India
[2] City Univ Hong Kong, Dept Civil & Architectural Engn, Hong Kong, Peoples R China
关键词
Chaos; Anti-synchronization; Fractional-order derivative; Active control method; GENERALIZED SYNCHRONIZATION; STABILITY; CRITERION; DYNAMICS; PHASE;
D O I
10.1007/s11071-013-1177-0
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This article deals with the anti-synchronization between two identical chaotic fractional-order Qi system, Genesio-Tesi system, and also between two different fractional-order Genesio-Tesi and Qi systems using active control method. The chaotic attractors of the systems are found for fractional-order time derivatives described in Caputo sense. Numerical simulation results which are carried out using Adams-Boshforth-Moulton method show that the method is reliable and effective for anti-synchronization of nonlinear dynamical evolutionary systems.
引用
收藏
页码:905 / 914
页数:10
相关论文
共 58 条
[1]   Synchronization between fractional-order Ravinovich-Fabrikant and Lotka-Volterra systems [J].
Agrawal, S. K. ;
Srivastava, M. ;
Das, S. .
NONLINEAR DYNAMICS, 2012, 69 (04) :2277-2288
[2]   Synchronization of fractional order chaotic systems using active control method [J].
Agrawal, S. K. ;
Srivastava, M. ;
Das, S. .
CHAOS SOLITONS & FRACTALS, 2012, 45 (06) :737-752
[3]   Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models [J].
Ahmed, E. ;
El-Sayed, A. M. A. ;
El-Saka, H. A. A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (01) :542-553
[4]  
Al-sawalha M. M., 2011, INT J NONLINEAR SCI, V11, P267
[5]  
Al-Sawalha M. M., 2009, J UNCERTAIN SYST, V3, P192
[6]   Chaos reduced-order anti-synchronization of chaotic systems with fully unknown parameters [J].
Al-sawalha, M. Mossa ;
Noorani, M. S. M. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (04) :1908-1920
[7]   Anti-synchronization of chaotic systems with uncertain parameters via adaptive control [J].
Al-sawalha, M. Mossa ;
Noorani, M. S. M. .
PHYSICS LETTERS A, 2009, 373 (32) :2852-2857
[8]  
[Anonymous], PHYS REV E
[9]  
[Anonymous], J NONLINEAR SYST APP
[10]   Synchronization of two Lorenz systems using active control [J].
Bai, EW ;
Lonngren, KE .
CHAOS SOLITONS & FRACTALS, 1997, 8 (01) :51-58