Pathologic stratification of operable lung adenocarcinoma using radiomics features extracted from dual energy ct images

被引:57
作者
Bae, Jung Min [1 ]
Jeong, Ji Yun [2 ]
Lee, Ho Yun [1 ]
Sohn, Insuk [3 ]
Kim, Hye Seung [3 ]
Son, Ji Ye [1 ]
Kwon, O. Jung [4 ,5 ]
Choi, Joon Young [6 ]
Lee, Kyung Soo [1 ]
Shim, Young Mog [7 ]
机构
[1] Sungkyunkwan Univ, Samsung Med Ctr, Sch Med, Dept Radiol & Ctr Imaging Sci, Seoul 135710, South Korea
[2] Kyungpook Natl Univ, Kyungpook Natl Univ Med Ctr, Sch Med, Dept Pathol, Daegu 702210, South Korea
[3] Sungkyunkwan Univ, Biostat & Clin Epidemiol Ctr, Sch Med, Seoul 135710, South Korea
[4] Sungkyunkwan Univ, Sch Med, Div Resp, Seoul 135710, South Korea
[5] Sungkyunkwan Univ, Samsung Med Ctr, Sch Med, Crit Med Dept Internal Med, Seoul 135710, South Korea
[6] Sungkyunkwan Univ, Samsung Med Ctr, Sch Med, Dept Nucl Med, Seoul 135710, South Korea
[7] Sungkyunkwan Univ, Samsung Med Ctr, Sch Med, Dept Thorac & Cardiovasc Surg, Seoul 135710, South Korea
关键词
lung adenocarcinoma; heterogeneity; radiomics; texture analysis; dual energy CT; SECTION COMPUTED-TOMOGRAPHY; SOLITARY PULMONARY NODULES; IASLC/ATS/ERS CLASSIFICATION; TUMOR HETEROGENEITY; INITIAL-EXPERIENCE; SUBLOBAR RESECTION; TEXTURE ANALYSIS; CANCER; SURVIVAL; IMPACT;
D O I
10.18632/oncotarget.13476
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: To evaluate the usefulness of surrogate biomarkers as predictors of histopathologic tumor grade and aggressiveness using radiomics data from dual-energy computed tomography (DECT), with the ultimate goal of accomplishing stratification of early-stage lung adenocarcinoma for optimal treatment. Results: Pathologic grade was divided into grades 1, 2, and 3. Multinomial logistic regression analysis revealed i-uniformity and 97.5th percentile CT attenuation value as independent significant factors to stratify grade 2 or 3 from grade 1. The AUC value calculated from leave-one-out cross-validation procedure for discriminating grades 1, 2, and 3 was 0.9307 (95% CI: 0.8514-1), 0.8610 (95% CI: 0.7547-0.9672), and 0.8394 (95% CI: 0.7045-0.9743), respectively. Materials and Methods: A total of 80 patients with 91 clinically and radiologically suspected stage I or II lung adenocarcinoma were prospectively enrolled. All patients underwent DECT and F-18-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT, followed by surgery. Quantitative CT and PET imaging characteristics were evaluated using a radiomics approach. Significant features for a tumor aggressiveness prediction model were extracted and used to calculate diagnostic performance for predicting all pathologic grades. Conclusions: Quantitative radiomics values from DECT imaging metrics can help predict pathologic aggressiveness of lung adenocarcinoma.
引用
收藏
页码:523 / 535
页数:13
相关论文
共 39 条
  • [1] Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
    Aerts, Hugo J. W. L.
    Velazquez, Emmanuel Rios
    Leijenaar, Ralph T. H.
    Parmar, Chintan
    Grossmann, Patrick
    Cavalho, Sara
    Bussink, Johan
    Monshouwer, Rene
    Haibe-Kains, Benjamin
    Rietveld, Derek
    Hoebers, Frank
    Rietbergen, Michelle M.
    Leemans, C. Rene
    Dekker, Andre
    Quackenbush, John
    Gillies, Robert J.
    Lambin, Philippe
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [2] Texture analysis of aggressive and nonaggressive lung tumor CE CT images
    Al-Kadi, Omar S.
    Watson, D.
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2008, 55 (07) : 1822 - 1830
  • [3] Prognostic Significance of Grading in Lung Adenocarcinoma
    Barletta, Justine A.
    Yeap, Beow Y.
    Chirieac, Lucian R.
    [J]. CANCER, 2010, 116 (03) : 659 - 669
  • [4] Clinical Utility of Dual-Energy CT in the Evaluation of Solitary Pulmonary Nodules: Initial Experience
    Chae, Eun Jin
    Song, Jae-Woo
    Seo, Joon Beom
    Krauss, Bernhard
    Jang, Yu Mi
    Song, Koun-Sik
    [J]. RADIOLOGY, 2008, 249 (02) : 671 - 681
  • [5] Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis
    Chicklore, Sugama
    Goh, Vicky
    Siddique, Musib
    Roy, Arunabha
    Marsden, Paul K.
    Cook, Gary J. R.
    [J]. EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2013, 40 (01) : 133 - 140
  • [6] Quantitative Analysis of Tumor in Bronchial Biopsy Specimens
    Coghlin, Caroline L.
    Smith, Louise J.
    Bakar, Salmah
    Stewart, Keith N.
    Devereux, Graham S.
    Nicolson, Marianne C.
    Kerr, Keith M.
    [J]. JOURNAL OF THORACIC ONCOLOGY, 2010, 5 (04) : 448 - 452
  • [7] CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma
    Coroller, Thibaud P.
    Grossmann, Patrick
    Hou, Ying
    Velazquez, Emmanuel Rios
    Leijenaar, Ralph T. H.
    Hermann, Gretchen
    Lambin, Philippe
    Haibe-Kains, Benjamin
    Mak, Raymond H.
    Aerts, Hugo J. W. L.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2015, 114 (03) : 345 - 350
  • [8] Assessment of Response to Tyrosine Kinase Inhibitors in Metastatic Renal Cell Cancer: CT Texture as a Predictive Biomarker
    Goh, Vicky
    Ganeshan, Balaji
    Nathan, Paul
    Juttla, Jaspal K.
    Vinayan, Anup
    Miles, Kenneth A.
    [J]. RADIOLOGY, 2011, 261 (01) : 165 - 171
  • [9] J-i Nitadori, 2013, JNCI-J NATL CANCER I
  • [10] Material differentiation by dual energy CT: initial experience
    Johnson, Thorsten R. C.
    Krauss, Bernhard
    Sedlmair, Martin
    Grasruck, Michael
    Bruder, Herbert
    Morhard, Dominik
    Fink, Christian
    Weckbach, Sabine
    Lenhard, Miriam
    Schmidt, Bernhard
    Flohr, Thomas
    Reiser, Maximilian F.
    Becker, Christoph R.
    [J]. EUROPEAN RADIOLOGY, 2007, 17 (06) : 1510 - 1517