Pathologic stratification of operable lung adenocarcinoma using radiomics features extracted from dual energy ct images

被引:58
作者
Bae, Jung Min [1 ]
Jeong, Ji Yun [2 ]
Lee, Ho Yun [1 ]
Sohn, Insuk [3 ]
Kim, Hye Seung [3 ]
Son, Ji Ye [1 ]
Kwon, O. Jung [4 ,5 ]
Choi, Joon Young [6 ]
Lee, Kyung Soo [1 ]
Shim, Young Mog [7 ]
机构
[1] Sungkyunkwan Univ, Samsung Med Ctr, Sch Med, Dept Radiol & Ctr Imaging Sci, Seoul 135710, South Korea
[2] Kyungpook Natl Univ, Kyungpook Natl Univ Med Ctr, Sch Med, Dept Pathol, Daegu 702210, South Korea
[3] Sungkyunkwan Univ, Biostat & Clin Epidemiol Ctr, Sch Med, Seoul 135710, South Korea
[4] Sungkyunkwan Univ, Sch Med, Div Resp, Seoul 135710, South Korea
[5] Sungkyunkwan Univ, Samsung Med Ctr, Sch Med, Crit Med Dept Internal Med, Seoul 135710, South Korea
[6] Sungkyunkwan Univ, Samsung Med Ctr, Sch Med, Dept Nucl Med, Seoul 135710, South Korea
[7] Sungkyunkwan Univ, Samsung Med Ctr, Sch Med, Dept Thorac & Cardiovasc Surg, Seoul 135710, South Korea
关键词
lung adenocarcinoma; heterogeneity; radiomics; texture analysis; dual energy CT; SECTION COMPUTED-TOMOGRAPHY; SOLITARY PULMONARY NODULES; IASLC/ATS/ERS CLASSIFICATION; TUMOR HETEROGENEITY; INITIAL-EXPERIENCE; SUBLOBAR RESECTION; TEXTURE ANALYSIS; CANCER; SURVIVAL; IMPACT;
D O I
10.18632/oncotarget.13476
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: To evaluate the usefulness of surrogate biomarkers as predictors of histopathologic tumor grade and aggressiveness using radiomics data from dual-energy computed tomography (DECT), with the ultimate goal of accomplishing stratification of early-stage lung adenocarcinoma for optimal treatment. Results: Pathologic grade was divided into grades 1, 2, and 3. Multinomial logistic regression analysis revealed i-uniformity and 97.5th percentile CT attenuation value as independent significant factors to stratify grade 2 or 3 from grade 1. The AUC value calculated from leave-one-out cross-validation procedure for discriminating grades 1, 2, and 3 was 0.9307 (95% CI: 0.8514-1), 0.8610 (95% CI: 0.7547-0.9672), and 0.8394 (95% CI: 0.7045-0.9743), respectively. Materials and Methods: A total of 80 patients with 91 clinically and radiologically suspected stage I or II lung adenocarcinoma were prospectively enrolled. All patients underwent DECT and F-18-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT, followed by surgery. Quantitative CT and PET imaging characteristics were evaluated using a radiomics approach. Significant features for a tumor aggressiveness prediction model were extracted and used to calculate diagnostic performance for predicting all pathologic grades. Conclusions: Quantitative radiomics values from DECT imaging metrics can help predict pathologic aggressiveness of lung adenocarcinoma.
引用
收藏
页码:523 / 535
页数:13
相关论文
共 39 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   Texture analysis of aggressive and nonaggressive lung tumor CE CT images [J].
Al-Kadi, Omar S. ;
Watson, D. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2008, 55 (07) :1822-1830
[3]   Prognostic Significance of Grading in Lung Adenocarcinoma [J].
Barletta, Justine A. ;
Yeap, Beow Y. ;
Chirieac, Lucian R. .
CANCER, 2010, 116 (03) :659-669
[4]   Clinical Utility of Dual-Energy CT in the Evaluation of Solitary Pulmonary Nodules: Initial Experience [J].
Chae, Eun Jin ;
Song, Jae-Woo ;
Seo, Joon Beom ;
Krauss, Bernhard ;
Jang, Yu Mi ;
Song, Koun-Sik .
RADIOLOGY, 2008, 249 (02) :671-681
[5]   Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis [J].
Chicklore, Sugama ;
Goh, Vicky ;
Siddique, Musib ;
Roy, Arunabha ;
Marsden, Paul K. ;
Cook, Gary J. R. .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2013, 40 (01) :133-140
[6]   Quantitative Analysis of Tumor in Bronchial Biopsy Specimens [J].
Coghlin, Caroline L. ;
Smith, Louise J. ;
Bakar, Salmah ;
Stewart, Keith N. ;
Devereux, Graham S. ;
Nicolson, Marianne C. ;
Kerr, Keith M. .
JOURNAL OF THORACIC ONCOLOGY, 2010, 5 (04) :448-452
[7]   CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma [J].
Coroller, Thibaud P. ;
Grossmann, Patrick ;
Hou, Ying ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Hermann, Gretchen ;
Lambin, Philippe ;
Haibe-Kains, Benjamin ;
Mak, Raymond H. ;
Aerts, Hugo J. W. L. .
RADIOTHERAPY AND ONCOLOGY, 2015, 114 (03) :345-350
[8]   Assessment of Response to Tyrosine Kinase Inhibitors in Metastatic Renal Cell Cancer: CT Texture as a Predictive Biomarker [J].
Goh, Vicky ;
Ganeshan, Balaji ;
Nathan, Paul ;
Juttla, Jaspal K. ;
Vinayan, Anup ;
Miles, Kenneth A. .
RADIOLOGY, 2011, 261 (01) :165-171
[9]  
J-i Nitadori, 2013, JNCI-J NATL CANCER I
[10]   Material differentiation by dual energy CT: initial experience [J].
Johnson, Thorsten R. C. ;
Krauss, Bernhard ;
Sedlmair, Martin ;
Grasruck, Michael ;
Bruder, Herbert ;
Morhard, Dominik ;
Fink, Christian ;
Weckbach, Sabine ;
Lenhard, Miriam ;
Schmidt, Bernhard ;
Flohr, Thomas ;
Reiser, Maximilian F. ;
Becker, Christoph R. .
EUROPEAN RADIOLOGY, 2007, 17 (06) :1510-1517