Breathing synchronization in interconnected networks

被引:44
作者
Louzada, V. H. P. [1 ]
Araujo, N. A. M. [1 ]
Andrade, J. S., Jr. [1 ,2 ]
Herrmann, H. J. [1 ,2 ]
机构
[1] ETH Honggerberg, IfB, CH-8093 Zurich, Switzerland
[2] Univ Fed Ceara, Dept Fis, BR-60451970 Fortaleza, Ceara, Brazil
基金
欧洲研究理事会; 瑞士国家科学基金会;
关键词
COMPLEX NETWORKS; KURAMOTO MODEL; TIME-DELAY; OSCILLATORS; PLASMODIUM; SYSTEM;
D O I
10.1038/srep03289
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Global synchronization in a complex network of oscillators emerges from the interplay between its topology and the dynamics of the pairwise interactions among its numerous components. When oscillators are spatially separated, however, a time delay appears in the interaction which might obstruct synchronization. Here we study the synchronization properties of interconnected networks of oscillators with a time delay between networks and analyze the dynamics as a function of the couplings and communication lag. We discover a new breathing synchronization regime, where two groups appear in each network synchronized at different frequencies. Each group has a counterpart in the opposite network, one group is in phase and the other in anti-phase with their counterpart. For strong couplings, instead, networks are internally synchronized but a phase shift between them might occur. The implications of our findings on several socio-technical and biological systems are discussed.
引用
收藏
页数:5
相关论文
共 48 条
[1]   The Kuramoto model:: A simple paradigm for synchronization phenomena [J].
Acebrón, JA ;
Bonilla, LL ;
Vicente, CJP ;
Ritort, F ;
Spigler, R .
REVIEWS OF MODERN PHYSICS, 2005, 77 (01) :137-185
[2]  
[Anonymous], 2013, PHYS REV LETT, V110
[3]   Synchronization in complex networks [J].
Arenas, Alex ;
Diaz-Guilera, Albert ;
Kurths, Jurgen ;
Moreno, Yamir ;
Zhou, Changsong .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03) :93-153
[4]  
Barrat A., 2008, Dynamical Processes on Complex Networks
[5]   Complex networks: Structure and dynamics [J].
Boccaletti, S. ;
Latora, V. ;
Moreno, Y. ;
Chavez, M. ;
Hwang, D. -U. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5) :175-308
[6]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101
[7]  
Boccaletti S., 2008, SYNCHRONIZED DYNAMIC
[8]   Suppressing cascades of load in interdependent networks [J].
Brummitt, Charles D. ;
D'Souza, Raissa M. ;
Leicht, E. A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (12) :E680-E689
[9]   Catastrophic cascade of failures in interdependent networks [J].
Buldyrev, Sergey V. ;
Parshani, Roni ;
Paul, Gerald ;
Stanley, H. Eugene ;
Havlin, Shlomo .
NATURE, 2010, 464 (7291) :1025-1028
[10]   Emergence of network features from multiplexity [J].
Cardillo, Alessio ;
Gomez-Gardenes, Jesus ;
Zanin, Massimiliano ;
Romance, Miguel ;
Papo, David ;
del Pozo, Francisco ;
Boccaletti, Stefano .
SCIENTIFIC REPORTS, 2013, 3