Detection of Pulsar Candidates using Bagging Method

被引:10
作者
Azhari, Mourad [1 ]
Abarda, Abdallah [2 ]
Alaoui, Altaf [1 ]
Ettaki, Badia [3 ]
Zerouaoui, Jamal [1 ]
机构
[1] Ibn Tofail Univ, Lab Engn Sci & Modeling, Fac Sci, Campus Univ,BP 133, Kenitra, Morocco
[2] Univ Hassan 1er, Lab Modelisat Math & Calculs Econ, FSJES, Settat, Morocco
[3] Sch Informat Sci Rabat, Dept Data Content & Knowledge Engn, Lab Res Comp Sci Data Sci & Knowledge Engn, Rabat, Morocco
来源
11TH INTERNATIONAL CONFERENCE ON AMBIENT SYSTEMS, NETWORKS AND TECHNOLOGIES (ANT) / THE 3RD INTERNATIONAL CONFERENCE ON EMERGING DATA AND INDUSTRY 4.0 (EDI40) / AFFILIATED WORKSHOPS | 2020年 / 170卷
关键词
Bagging; CVM; ANN; KNN; CDT; AUC; Error Rate; Computation Time(CT); ARTIFICIAL NEURAL-NETWORK; CLASSIFICATION; SELECTION; SVM;
D O I
10.1016/j.procs.2020.03.062
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The pulsar classification represents a major issue in the astrophysical area. The Bagging Algorithm is an ensemble method widely used to improve the performance of classification algorithms, especially in the case of pulsar search. In this way, our paper tries to prove how the Bagging Method can improve the performance of pulsar candidate detection in connection with four basic classifiers: Core Vector Machines (CVM), the K-Nearest-Neighbors (KNN), the Artificial Neural Network (ANN), and Cart Decision Tree (CDT). The Error Rate, Area Under the Curve (AUC), and Computation Time (CT) are measured to compare the performance of different classifiers. The High Time Resolution Universe (HTRU2) dataset, collected from the UCI Machine Learning Repository, is used in the experimentation phase. (C) 2020 The Authors. Published by Elsevier B.V.
引用
收藏
页码:1096 / 1101
页数:6
相关论文
共 25 条
[1]  
Abarda A., 2018, P INT C LEARNING OPT
[2]   A Divided Latent Class analysis for Big Data [J].
Abarda, Abdallah ;
Bentaleb, Youssef ;
Mharzi, Hassan .
14TH INTERNATIONAL CONFERENCE ON MOBILE SYSTEMS AND PERVASIVE COMPUTING (MOBISPC 2017) / 12TH INTERNATIONAL CONFERENCE ON FUTURE NETWORKS AND COMMUNICATIONS (FNC 2017) / AFFILIATED WORKSHOPS, 2017, 110 :428-433
[3]   Bankruptcy forecasting:: An empirical comparison of AdaBoost and neural networks [J].
Alfaro, Esteban ;
Garcia, Noelia ;
Gamez, Matias ;
Elizondo, David .
DECISION SUPPORT SYSTEMS, 2008, 45 (01) :110-122
[4]   AN INTRODUCTION TO KERNEL AND NEAREST-NEIGHBOR NONPARAMETRIC REGRESSION [J].
ALTMAN, NS .
AMERICAN STATISTICIAN, 1992, 46 (03) :175-185
[5]  
Anguita D., 2012, Esann, P441
[6]  
[Anonymous], 2017, THESIS
[7]  
Azhari Mourad, 2020, Big Data and Networks Technologies. Lecture Notes in Networks and Systems (LNNS 81), P183, DOI 10.1007/978-3-030-23672-4_14
[8]   Adaptation of the Random Forest Method: Solving the problem of Pulsar Search [J].
Azhari, Mourad ;
Alaoui, Altaf ;
Achraoui, Zakia ;
Ettaki, Badia ;
Zerouaoui, Jamal .
4TH INTERNATIONAL CONFERENCE ON SMART CITY APPLICATIONS (SCA' 19), 2019,
[9]   The High Time Resolution Universe Pulsar Survey - VI. An artificial neural network and timing of 75 pulsars [J].
Bates, S. D. ;
Bailes, M. ;
Barsdell, B. R. ;
Bhat, N. D. R. ;
Burgay, M. ;
Burke-Spolaor, S. ;
Champion, D. J. ;
Coster, P. ;
D'Amico, N. ;
Jameson, A. ;
Johnston, S. ;
Keith, M. J. ;
Kramer, M. ;
Levin, L. ;
Lyne, A. ;
Milia, S. ;
Ng, C. ;
Nietner, C. ;
Possenti, A. ;
Stappers, B. ;
Thornton, D. ;
van Straten, W. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 427 (02) :1052-1065
[10]  
Breiman L, 1996, MACH LEARN, V24, P123, DOI 10.1007/BF00058655