Differential Evolution with Linear Bias Reduction in Parameter Adaptation

被引:8
作者
Stanovov, Vladimir [1 ]
Akhmedova, Shakhnaz [1 ]
Semenkin, Eugene [1 ]
机构
[1] Reshetnev Siberian State Univ Sci & Technol, Dept Syst Anal & Operat Res, Krasnoyarsk 660014, Russia
关键词
optimization; differential evolution; L-SHADE; parameter adaptation; parameter control; OPTIMIZATION;
D O I
10.3390/a13110283
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this study, a new parameter control scheme is proposed for the differential evolution algorithm. The developed linear bias reduction scheme controls the Lehmer mean parameter value depending on the optimization stage, allowing the algorithm to improve the exploration properties at the beginning of the search and speed up the exploitation at the end of the search. As a basic algorithm, the L-SHADE approach is considered, as well as its modifications, namely the jSO and DISH algorithms. The experiments are performed on the CEC 2017 and 2020 bound-constrained benchmark problems, and the performed statistical comparison of the results demonstrates that the linear bias reduction allows significant improvement of the differential evolution performance for various types of optimization problems.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 43 条
[1]   Algorithmic design issues in adaptive differential evolution schemes: Review and taxonomy [J].
Al-Dabbagh, Rawaa Dawoud ;
Neri, Ferrante ;
Idris, Norisma ;
Baba, Mohd Sapiyan .
SWARM AND EVOLUTIONARY COMPUTATION, 2018, 43 :284-311
[2]   A Systematic Literature Review of Adaptive Parameter Control Methods for Evolutionary Algorithms [J].
Aleti, Aldeida ;
Moser, Irene .
ACM COMPUTING SURVEYS, 2016, 49 (03)
[3]  
[Anonymous], 2002, P 4 INT WORKSH SYMB
[4]  
[Anonymous], 2001, P 3 INT WORKSH SYMB
[5]  
Awad N. H., 2016, Technical Report
[6]  
Awad NH, 2017, IEEE C EVOL COMPUTAT, P372, DOI 10.1109/CEC.2017.7969336
[7]  
Brest J., 2020, P 2020 IEEE C EV COM
[8]  
Brest J, 2019, IEEE C EVOL COMPUTAT, P19, DOI [10.1109/cec.2019.8789904, 10.1109/CEC.2019.8789904]
[9]   Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems [J].
Brest, Janez ;
Greiner, Saso ;
Boskovic, Borko ;
Mernik, Marjan ;
Zumer, Vijern .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (06) :646-657
[10]  
Brest J, 2017, IEEE C EVOL COMPUTAT, P1311, DOI 10.1109/CEC.2017.7969456