p-Coumaroyl-CoA:monolignol transferase (PMT) acts specifically in the lignin biosynthetic pathway in Brachypodium distachyon

被引:138
作者
Petrik, Deborah L. [1 ,2 ]
Karlen, Steven D. [3 ]
Cass, Cynthia L. [1 ,2 ]
Padmakshan, Dharshana [3 ]
Lu, Fachuang [3 ]
Liu, Sarah [3 ]
Le Bris, Philippe [4 ,5 ]
Antelme, Sebastien [4 ,5 ]
Santoro, Nicholas [6 ]
Wilkerson, Curtis G. [7 ]
Sibout, Richard [4 ,5 ]
Lapierre, Catherine [4 ,5 ]
Ralph, John [3 ]
Sedbrook, John C. [1 ,2 ]
机构
[1] Illinois State Univ, Sch Biol Sci, Normal, IL 61790 USA
[2] Great Lakes Bioenergy Res Ctr, Dept Energy, Madison, WI 53706 USA
[3] Univ Wisconsin, Wisconsin Energy Inst, Great Lakes Bioenergy Res Ctr, Dept Biochem,Dept Energy, Madison, WI 53726 USA
[4] INRA, IJPB, UMR1318, F-78000 Versailles, France
[5] AgroParisTech, IJPB, Saclay Plant Sci, UMR1318, F-78000 Versailles, France
[6] Michigan State Univ, Great Lakes Bioenergy Res Ctr, Dept Energy, E Lansing, MI 48824 USA
[7] Michigan State Univ, Great Lakes Bioenergy Res Ctr, Dept Biochem & Mol Biol, Dept Plant Biol,Dept Energy, E Lansing, MI 48824 USA
关键词
NMR; Brachypodium distachyon; DFRC method; lignin; BAHD acyltransferase; thioacidolysis; biomass; lignin acylation; grass; DFRC METHOD; STRUCTURAL-CHARACTERIZATION; MEDIATED TRANSFORMATION; SINAPYL ACETATE; CELL; LIGNIFICATION; ACYLTRANSFERASE; EXPRESSION; MECHANISM; FERULATE;
D O I
10.1111/tpj.12420
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Grass lignins contain substantial amounts of p-coumarate (pCA) that acylate the side-chains of the phenylpropanoid polymer backbone. An acyltransferase, named p-coumaroyl-CoA:monolignol transferase (OsPMT), that could acylate monolignols with pCA in vitro was recently identified from rice. In planta, such monolignol-pCA conjugates become incorporated into lignin via oxidative radical coupling, thereby generating the observed pCA appendages; however p-coumarates also acylate arabinoxylans in grasses. To test the authenticity of PMT as a lignin biosynthetic pathway enzyme, we examined Brachypodium distachyon plants with altered BdPMT gene function. Using newly developed cell wall analytical methods, we determined that the transferase was involved specifically in monolignol acylation. A sodium azide-generated Bdpmt-1 missense mutant had no (<0.5%) residual pCA on lignin, and BdPMT RNAi plants had levels as low as 10% of wild-type, whereas the amounts of pCA acylating arabinosyl units on arabinoxylans in these PMT mutant plants remained unchanged. pCA acylation of lignin from BdPMT-overexpressing plants was found to be more than three-fold higher than that of wild-type, but again the level on arabinosyl units remained unchanged. Taken together, these data are consistent with a defined role for grass PMT genes in encoding BAHD (BEAT, AHCT, HCBT, and DAT) acyltransferases that specifically acylate monolignols with pCA and produce monolignol p-coumarate conjugates that are used for lignification in planta.
引用
收藏
页码:713 / 726
页数:14
相关论文
共 60 条
[1]   Overexpression of a BAHD Acyltransferase, OsAt10, Alters Rice Cell Wall Hydroxycinnamic Acid Content and Saccharification [J].
Bartley, Laura E. ;
Peck, Matthew L. ;
Kim, Sung-Ryul ;
Ebert, Berit ;
Manisseri, Chithra ;
Chiniquy, Dawn M. ;
Sykes, Robert ;
Gao, Lingfang ;
Rautengarten, Carsten ;
Vega-Sanchez, Miguel E. ;
Benke, Peter I. ;
Canlas, Patrick E. ;
Cao, Peijian ;
Brewer, Susan ;
Lin, Fan ;
Smith, Whitney L. ;
Zhang, Xiaohan ;
Keasling, Jay D. ;
Jentoff, Rolf E. ;
Foster, Steven B. ;
Zhou, Jizhong ;
Ziebell, Angela ;
An, Gynheung ;
Scheller, Henrik V. ;
Ronald, Pamela C. .
PLANT PHYSIOLOGY, 2013, 161 (04) :1615-1633
[2]   Acetyltransfer in natural product biosynthesis -: functional cloning and molecular analysis of vinorine synthase [J].
Bayer, A ;
Ma, XY ;
Stöckigt, J .
BIOORGANIC & MEDICINAL CHEMISTRY, 2004, 12 (10) :2787-2795
[3]   Disruption of LACCASE4 and 17 Results in Tissue-Specific Alterations to Lignification of Arabidopsis thaliana Stems [J].
Berthet, Serge ;
Demont-Caulet, Nathalie ;
Pollet, Brigitte ;
Bidzinski, Przemyslaw ;
Cezard, Laurent ;
Le Bris, Phillipe ;
Borrega, Nero ;
Herve, Jonathan ;
Blondet, Eddy ;
Balzergue, Sandrine ;
Lapierre, Catherine ;
Jouanin, Lise .
PLANT CELL, 2011, 23 (03) :1124-1137
[4]  
Betts MJ, 2003, Bioinformatics for geneticists, P289, DOI [10.1002/0470867302.CH14, DOI 10.1002/0470867302.CH14]
[5]   Lignin biosynthesis [J].
Boerjan, W ;
Ralph, J ;
Baucher, M .
ANNUAL REVIEW OF PLANT BIOLOGY, 2003, 54 :519-546
[6]   Cellulosic Biofuels [J].
Carroll, Andrew ;
Somerville, Chris .
ANNUAL REVIEW OF PLANT BIOLOGY, 2009, 60 :165-182
[7]   COMPARATIVE STUDIES ON CELLULOLYTIC ENZYME LIGNIN AND MILLED WOOD LIGNIN OF SWEETGUM AND SPRUCE [J].
CHANG, HM ;
COWLING, EB ;
BROWN, W ;
ADLER, E ;
MIKSCHE, G .
HOLZFORSCHUNG, 1975, 29 (05) :153-159
[8]   Loosening lignin's grip on biofuel production [J].
Chapple, Clint ;
Ladisch, Michael ;
Meilan, Rick .
NATURE BIOTECHNOLOGY, 2007, 25 (07) :746-748
[9]   Lignin modification improves fermentable sugar yields for biofuel production [J].
Chen, Fang ;
Dixon, Richard A. .
NATURE BIOTECHNOLOGY, 2007, 25 (07) :759-761
[10]   Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants [J].
Christensen, AH ;
Quail, PH .
TRANSGENIC RESEARCH, 1996, 5 (03) :213-218