Sharp energy estimates for nonlinear fractional diffusion equations

被引:58
作者
Cabre, Xavier [1 ,2 ]
Cinti, Eleonora [3 ]
机构
[1] ICREA, Barcelona 08028, Spain
[2] Univ Politecn Cataluna, Dept Matemat Aplicada 1, E-08028 Barcelona, Spain
[3] Univ Bologna, Dipartimento Matemat, I-40126 Bologna, Italy
基金
欧洲研究理事会;
关键词
Fractional laplacian; Energy estimates; Symmetry properties; ELLIPTIC-EQUATIONS; EXTENSION PROBLEM; CONJECTURE; REGULARITY; SYMMETRY; SPACE;
D O I
10.1007/s00526-012-0580-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the nonlinear fractional equation (-Delta)(s) u = f (u) in R-n, for all fractions 0 < s < 1 and all nonlinearities f. For every fractional power s is an element of (0, 1), we obtain sharp energy estimates for bounded global minimizers and for bounded monotone solutions. They are sharp since they are optimal for solutions depending only on one Euclidian variable. As a consequence, we deduce the one-dimensional symmetry of bounded global minimizers and of bounded monotone solutions in dimension n = 3 whenever 1/2 <= s < 1. This result is the analogue of a conjecture of De Giorgi on one-dimensional symmetry for the classical equation -Delta u = f (u) in R-n. It remains open for n = 3 and s < 1/2, and also for n >= 4 and all s.
引用
收藏
页码:233 / 269
页数:37
相关论文
共 27 条
[1]   On a long-standing conjecture of E.!De Giorgi:: Symmetry in 3D for general nonlinearities and a local minimality property [J].
Alberti, G ;
Ambrosio, L ;
Cabré, X .
ACTA APPLICANDAE MATHEMATICAE, 2001, 65 (1-3) :9-33
[2]   Phase transition with the line-tension effect [J].
Alberti, G ;
Bouchitte, G ;
Seppecher, P .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1998, 144 (01) :1-46
[3]   Entire solutions of semilinear elliptic equations in R3 and a conjecture of De Giorgi [J].
Ambrosio, L ;
Cabré, X .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 13 (04) :725-739
[4]  
[Anonymous], PREPRINT
[5]   Layer solutions in a half-space for boundary reactions [J].
Cabré, X ;
Solà-Morales, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (12) :1678-1732
[6]  
Cabre X., T AM MATH S IN PRESS
[7]  
Cabre X., 1967, PREPRINT
[8]   ENERGY ESTIMATES AND 1-D SYMMETRY FOR NONLINEAR EQUATIONS INVOLVING THE HALF-LAPLACIAN [J].
Cabre, Xavier ;
Cinti, Eleonora .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 28 (03) :1179-1206
[9]   Nonlocal Minimal Surfaces [J].
Caffarelli, L. ;
Roquejoffre, J. -M. ;
Savin, O. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2010, 63 (09) :1111-1144
[10]  
Caffarelli L., PREPRINT