QUASI-BAYESIAN ANALYSIS OF NONPARAMETRIC INSTRUMENTAL VARIABLES MODELS

被引:19
|
作者
Kato, Kengo [1 ]
机构
[1] Univ Tokyo, Grad Sch Econ, Bunkyo Ku, Tokyo 1130033, Japan
来源
ANNALS OF STATISTICS | 2013年 / 41卷 / 05期
关键词
Asymptotic normality; inverse problem; nonparametric instrumental variables model; quasi-Bayes; rates of contraction; POSTERIOR DISTRIBUTIONS; CONVERGENCE-RATES; INVERSE PROBLEMS; ASYMPTOTIC NORMALITY; EXPONENTIAL-FAMILIES; INFERENCE; REGRESSION; CONTRACTION; COMPLEXITY; NUMBER;
D O I
10.1214/13-AOS1150
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper aims at developing a quasi-Bayesian analysis of the nonparametric instrumental variables model, with a focus on the asymptotic properties of quasi-posterior distributions. In this paper, instead of assuming a distributional assumption on the data generating process, we consider a quasi-likelihood induced from the conditional moment restriction, and put priors on the function-valued parameter. We call the resulting posterior quasi-posterior, which corresponds to "Gibbs posterior" in the literature. Here we focus on priors constructed on slowly growing finite-dimensional sieves. We derive rates of contraction and a nonparametric Bernstein-von Mises type result for the quasi-posterior distribution, and rates of convergence for the quasi-Bayes estimator defined by the posterior expectation. We show that, with priors suitably chosen, the quasi-posterior distribution (the quasi-Bayes estimator) attains the minimax optimal rate of contraction (convergence, resp.). These results greatly sharpen the previous related work.
引用
收藏
页码:2359 / 2390
页数:32
相关论文
共 50 条