QUASI-BAYESIAN ANALYSIS OF NONPARAMETRIC INSTRUMENTAL VARIABLES MODELS

被引:19
|
作者
Kato, Kengo [1 ]
机构
[1] Univ Tokyo, Grad Sch Econ, Bunkyo Ku, Tokyo 1130033, Japan
来源
ANNALS OF STATISTICS | 2013年 / 41卷 / 05期
关键词
Asymptotic normality; inverse problem; nonparametric instrumental variables model; quasi-Bayes; rates of contraction; POSTERIOR DISTRIBUTIONS; CONVERGENCE-RATES; INVERSE PROBLEMS; ASYMPTOTIC NORMALITY; EXPONENTIAL-FAMILIES; INFERENCE; REGRESSION; CONTRACTION; COMPLEXITY; NUMBER;
D O I
10.1214/13-AOS1150
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper aims at developing a quasi-Bayesian analysis of the nonparametric instrumental variables model, with a focus on the asymptotic properties of quasi-posterior distributions. In this paper, instead of assuming a distributional assumption on the data generating process, we consider a quasi-likelihood induced from the conditional moment restriction, and put priors on the function-valued parameter. We call the resulting posterior quasi-posterior, which corresponds to "Gibbs posterior" in the literature. Here we focus on priors constructed on slowly growing finite-dimensional sieves. We derive rates of contraction and a nonparametric Bernstein-von Mises type result for the quasi-posterior distribution, and rates of convergence for the quasi-Bayes estimator defined by the posterior expectation. We show that, with priors suitably chosen, the quasi-posterior distribution (the quasi-Bayes estimator) attains the minimax optimal rate of contraction (convergence, resp.). These results greatly sharpen the previous related work.
引用
收藏
页码:2359 / 2390
页数:32
相关论文
共 50 条
  • [1] Causal inference with some invalid instrumental variables: A quasi-Bayesian approach
    Goh, Gyuhyeong
    Yu, Jisang
    OXFORD BULLETIN OF ECONOMICS AND STATISTICS, 2022, 84 (06) : 1432 - 1451
  • [2] Nonparametric estimation of an instrumental regression: A quasi-Bayesian approach based on regularized posterior
    Florens, Jean-Pierre
    Simoni, Anna
    JOURNAL OF ECONOMETRICS, 2012, 170 (02) : 458 - 475
  • [3] Scalable Quasi-Bayesian Inference for Instrumental Variable Regression
    Wang, Ziyu
    Zhou, Yuhao
    Ren, Tongzheng
    Zhu, Jun
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [4] Quasi-Bayesian Nonparametric Density Estimation via Autoregressive Predictive Updates
    Ghalebikesabi, Sahra
    Holmes, Chris
    Fong, Edwin
    Lehmann, Brieuc
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2023, 216 : 658 - 668
  • [5] Quasi-Bayesian estimation of large Gaussian graphical models
    Atchade, Yves F.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 173 : 656 - 671
  • [6] Quasi-Bayesian model selection
    Inoue, Atsushi
    Shintani, Mototsugu
    QUANTITATIVE ECONOMICS, 2018, 9 (03) : 1265 - 1297
  • [8] QUASI-BAYESIAN MODELING OF MULTIVARIATE OUTLIERS
    FUNG, WK
    BACONSHONE, J
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1993, 16 (03) : 271 - 278
  • [9] QUASI-BAYESIAN ESTIMATION OF TIME-VARYING VOLATILITY IN DSGE MODELS
    Petrova, Katerina
    JOURNAL OF TIME SERIES ANALYSIS, 2019, 40 (01) : 151 - 157
  • [10] Quasi-Bayesian Inference for Production Frontiers
    Liu, Xiaobin
    Yang, Thomas Tao
    Zhang, Yichong
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2022, 40 (03) : 1334 - 1345