QUASI-BAYESIAN ANALYSIS OF NONPARAMETRIC INSTRUMENTAL VARIABLES MODELS

被引:20
作者
Kato, Kengo [1 ]
机构
[1] Univ Tokyo, Grad Sch Econ, Bunkyo Ku, Tokyo 1130033, Japan
关键词
Asymptotic normality; inverse problem; nonparametric instrumental variables model; quasi-Bayes; rates of contraction; POSTERIOR DISTRIBUTIONS; CONVERGENCE-RATES; INVERSE PROBLEMS; ASYMPTOTIC NORMALITY; EXPONENTIAL-FAMILIES; INFERENCE; REGRESSION; CONTRACTION; COMPLEXITY; NUMBER;
D O I
10.1214/13-AOS1150
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper aims at developing a quasi-Bayesian analysis of the nonparametric instrumental variables model, with a focus on the asymptotic properties of quasi-posterior distributions. In this paper, instead of assuming a distributional assumption on the data generating process, we consider a quasi-likelihood induced from the conditional moment restriction, and put priors on the function-valued parameter. We call the resulting posterior quasi-posterior, which corresponds to "Gibbs posterior" in the literature. Here we focus on priors constructed on slowly growing finite-dimensional sieves. We derive rates of contraction and a nonparametric Bernstein-von Mises type result for the quasi-posterior distribution, and rates of convergence for the quasi-Bayes estimator defined by the posterior expectation. We show that, with priors suitably chosen, the quasi-posterior distribution (the quasi-Bayes estimator) attains the minimax optimal rate of contraction (convergence, resp.). These results greatly sharpen the previous related work.
引用
收藏
页码:2359 / 2390
页数:32
相关论文
共 58 条
[1]   Posterior contraction rates for the Bayesian approach to linear ill-posed inverse problems [J].
Agapiou, Sergios ;
Larsson, Stig ;
Stuart, Andrew M. .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (10) :3828-3860
[2]   Efficient estimation of models with conditional moment restrictions containing unknown functions [J].
Ai, CR ;
Chen, XH .
ECONOMETRICA, 2003, 71 (06) :1795-1843
[3]  
BELLONI A., 2009, PREPRINT
[4]   ON THE COMPUTATIONAL COMPLEXITY OF MCMC-BASED ESTIMATORS IN LARGE SAMPLES [J].
Belloni, Alexandre ;
Chernozhukov, Victor .
ANNALS OF STATISTICS, 2009, 37 (04) :2011-2055
[5]   Semi-nonparametric IV estimation of shape-invariant Engel curves [J].
Blundell, Richard ;
Chen, Xiaohong ;
Kristensen, Dennis .
ECONOMETRICA, 2007, 75 (06) :1613-1669
[6]   BERNSTEIN-VON MISES THEOREMS FOR GAUSSIAN REGRESSION WITH INCREASING NUMBER OF REGRESSORS [J].
Bontemps, Dominique .
ANNALS OF STATISTICS, 2011, 39 (05) :2557-2584
[7]   A Bernstein-Von Mises Theorem for discrete probability distributions [J].
Boucheron, S. ;
Gassiat, E. .
ELECTRONIC JOURNAL OF STATISTICS, 2009, 3 :114-148
[8]  
Carrasco M, 2007, HBK ECON, V2, P5633, DOI 10.1016/S1573-4412(07)06077-1
[9]   Nonparametric statistical inverse problems [J].
Cavalier, L. .
INVERSE PROBLEMS, 2008, 24 (03)
[10]   Estimation of Nonparametric Conditional Moment Models With Possibly Nonsmooth Generalized Residuals [J].
Chen, Xiaohong ;
Pouzo, Demian .
ECONOMETRICA, 2012, 80 (01) :277-321