Proteomic analysis of the secretome of rice calli

被引:57
作者
Cho, Won Kyong [1 ]
Chen, Xiong Yan [1 ]
Chu, Hyosub [1 ]
Rim, Yeonggil [1 ]
Kim, Suwha [2 ]
Kim, Sun Tae [1 ]
Kim, Seon-Won [1 ]
Park, Zee-Yong [2 ]
Kim, Jae-Yean [1 ]
机构
[1] Gyeongsang Natl Univ, PMBBRC, Environm Biotechnol Natl Core Res Ctr, Div Appl Life Sci,BK21 Program,Grad Sch, Jinju 660701, South Korea
[2] Gwangju Inst Sci & Technol, Dept Life Sci, Kwangju 500711, South Korea
关键词
CELL-WALL PROTEOME; EXTRACELLULAR-MATRIX; ARABIDOPSIS; PROTEINS; PLANTS; PREDICTION; REVEALS; GROWTH; ROLES; GENE;
D O I
10.1111/j.1399-3054.2008.01198.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The cell wall and extracellular matrix in higher plants include secreted proteins that play critical roles in a wide range of cellular processes, such as structural integrity and biogenesis. Compared with the intensive cell wall proteomic studies in Arabidopsis, the list of cell wall proteins identified in monocot species is lacking. Therefore, we conducted a large-scale proteomic analysis of secreted proteins from rice. Highly purified secreted rice proteins were obtained from the medium of a suspension of callus culture and were analyzed with multidimensional protein identification technology (MudPIT). As a result, we could detect a total of 555 rice proteins by MudPIT analysis. Based on bioinformatic analyses, 27.7% (154 proteins) of the identified proteins are considered to be secreted proteins because they possess a signal peptide for the secretory pathway. Among the 154 identified proteins, 27% were functionally categorized as stress response proteins, followed by metabolic proteins (26%) and factors involved in protein modification (24%). Comparative analysis of cell wall proteins from Arabidopsis and rice revealed that one third of the secreted rice proteins overlapped with those of Arabidopsis. Furthermore, 25 novel rice-specific secreted proteins were found. This work presents the large scale of the rice secretory proteome from culture medium, which contributes to a deeper understanding of the rice secretome.
引用
收藏
页码:331 / 341
页数:11
相关论文
共 44 条
[1]   Plant receptor-like serine threonine kinases: Roles in signaling and plant defense [J].
Afzal, Ahmed J. ;
Wood, Andrew J. ;
Lightfoot, David A. .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2008, 21 (05) :507-517
[2]   Biosynthesis of cellulose-enriched tension wood in Populus:: global analysis of transcripts and metabolites identifies biochemical and developmental regulators in secondary wall biosynthesis [J].
Andersson-Gunnerås, S ;
Mellerowicz, EJ ;
Love, J ;
Segerman, B ;
Ohmiya, Y ;
Coutinho, PM ;
Nilsson, P ;
Henrissat, B ;
Moritz, T ;
Sundberg, B .
PLANT JOURNAL, 2006, 45 (02) :144-165
[3]   Arabidopsis cell wall proteome defined using multidimensional protein identification technology [J].
Bayer, EM ;
Bottrill, AR ;
Walshaw, J ;
Vigouroux, M ;
Naldrett, MJ ;
Thomas, CL ;
Maule, AJ .
PROTEOMICS, 2006, 6 (01) :301-311
[4]   Feature-based prediction of non-classical and leaderless protein secretion [J].
Bendtsen, JD ;
Jensen, LJ ;
Blom, N ;
von Heijne, G ;
Brunak, S .
PROTEIN ENGINEERING DESIGN & SELECTION, 2004, 17 (04) :349-356
[5]   Improved prediction of signal peptides: SignalP 3.0 [J].
Bendtsen, JD ;
Nielsen, H ;
von Heijne, G ;
Brunak, S .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 340 (04) :783-795
[6]   Proteomics of loosely bound cell wall proteins of Arabidopsis thaliana cell suspension cultures:: A critical analysis [J].
Borderies, G ;
Jamet, E ;
Lafitte, C ;
Rossignol, M ;
Jauneau, A ;
Boudart, G ;
Monsarrat, B ;
Esquerrè-Tugayé, MT ;
Boudet, A ;
Pont-Lezica, R .
ELECTROPHORESIS, 2003, 24 (19-20) :3421-3432
[7]   Identification of glycosylphosphatidylinositol-anchored proteins in Arabidopsis. A proteomic and genomic analysis [J].
Borner, GHH ;
Lilley, KS ;
Stevens, TJ ;
Dupree, P .
PLANT PHYSIOLOGY, 2003, 132 (02) :568-577
[8]   Role of the extracellular matrix in cell-cell signalling: paracrine paradigms [J].
Brownlee, C .
CURRENT OPINION IN PLANT BIOLOGY, 2002, 5 (05) :396-401
[9]   LysM, a widely distributed protein motif for binding to (peptido)glycans [J].
Buist, Girbe ;
Steen, Anton ;
Kok, Jan ;
Kuipers, Oscar R. .
MOLECULAR MICROBIOLOGY, 2008, 68 (04) :838-847
[10]   STRUCTURAL MODELS OF PRIMARY-CELL WALLS IN FLOWERING PLANTS - CONSISTENCY OF MOLECULAR-STRUCTURE WITH THE PHYSICAL-PROPERTIES OF THE WALLS DURING GROWTH [J].
CARPITA, NC ;
GIBEAUT, DM .
PLANT JOURNAL, 1993, 3 (01) :1-30