Au-Manganese Oxide Nanostructures by a Plasma-Assisted Process as Electrocatalysts for Oxygen Evolution: A Chemico-Physical Investigation

被引:8
作者
Bigiani, Lorenzo [1 ,2 ]
Gasparotto, Alberto [1 ,2 ]
Andreu, Teresa [3 ,4 ]
Verbeeck, Johan [5 ,6 ]
Sada, Cinzia [2 ,7 ]
Modin, Evgeny [8 ]
Lebedev, Oleg I. [9 ]
Morante, Juan Ramon [3 ,4 ]
Barreca, Davide [10 ,11 ]
Maccato, Chiara [1 ,2 ]
机构
[1] Padova Univ, Dept Chem Sci, I-35131 Padua, Italy
[2] INSTM, I-35131 Padua, Italy
[3] Catalonia Inst Energy Res IREC, Barcelona 08930, Spain
[4] Univ Barcelona UB, Barcelona 08028, Spain
[5] Univ Antwerp, EMAT, B-2020 Antwerp, Belgium
[6] Univ Antwerp, NANOlab Ctr Excellence, B-2020 Antwerp, Belgium
[7] Padova Univ, Dept Phys & Astron, I-35131 Padua, Italy
[8] CIC NanoGUNE BRTA, Donostia San Sebastian 20018, Spain
[9] UCBN, Lab CRISMAT, UMR 6508, CNRS,ENSICAEN, F-14050 Caen 4, France
[10] Padova Univ, Dept Chem Sci, CNR ICMATE, I-35131 Padua, Italy
[11] Padova Univ, Dept Chem Sci, INSTM, I-35131 Padua, Italy
基金
欧盟地平线“2020”;
关键词
manganese oxides; oxygen evolution reaction; strong metal-support interaction; METAL-SUPPORT INTERACTION; ELECTROCHEMICAL WATER OXIDATION; ATOMIC LAYER DEPOSITION; HIGHLY EFFICIENT; THIN-FILMS; CATALYTIC-ACTIVITY; REDUCTION; GROWTH; GOLD; NANOPARTICLES;
D O I
10.1002/adsu.202000177
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Earth-abundant and eco-friendly manganese oxides are promising platforms for the oxygen evolution reaction (OER) in water electrolysis. Herein, a versatile and potentially scalable route to gold-decorated manganese oxide-based OER electrocatalysts is reported. In particular, MnxOy(MnO2, Mn2O3) host matrices are grown on conductive glasses by plasma assisted-chemical vapor deposition (PA-CVD), and subsequently functionalized with gold nanoparticles (guest) as OER activators by radio frequency (RF)-sputtering. The final selective obtainment of MnO2- or Mn2O3-based systems is then enabled by annealing under oxidizing or inert atmosphere, respectively. A detailed material characterization evidences the formation of high-purity Mn(x)O(y)dendritic nanostructures with an open morphology and an efficient guest dispersion into the host matrices. The tailoring of Mn(x)O(y)phase composition and host-guest interactions has a remarkable influence on OER activity yielding, for the best performing Au/Mn(2)O(3)system, a current density of approximate to 5 mA cm(-2)at 1.65 V versus the reversible hydrogen electrode (RHE) and an overpotential close to 300 mV at 1 mA cm(-2). Such results, comparing favorably with literature data on manganese oxide-based materials, highlight the importance of compositional control, as well as of surface and interface engineering, to develop low-cost and efficient anode nanocatalysts for water splitting applications.
引用
收藏
页数:11
相关论文
共 55 条
[1]   Tuning the oxidation state of manganese oxide nanoparticles on oxygen- and nitrogen-functionalized carbon nanotubes for the electrocatalytic oxygen evolution reaction [J].
Antoni, Hendrik ;
Xia, Wei ;
Masa, Justus ;
Schuhmann, Wolfgang ;
Muhler, Martin .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (28) :18434-18442
[2]   Molybdenum-Doped Manganese Oxide as a Highly Efficient and Economical Water Oxidation Catalyst [J].
Balaghi, S. Esmael ;
Triana, C. A. ;
Patzke, Greta R. .
ACS CATALYSIS, 2020, 10 (03) :2074-2087
[3]   Nucleation and growth of nanophasic CeO2 thin films by plasma-enhanced CVD [J].
Barreca, D ;
Gasparotto, A ;
Tondello, E ;
Sada, C ;
Polizzi, S ;
Benedetti, A .
CHEMICAL VAPOR DEPOSITION, 2003, 9 (04) :199-206
[4]   Multi-functional MnO2 nanomaterials for photo-activated applications by a plasma-assisted fabrication route [J].
Barreca, Davide ;
Gri, Filippo ;
Gasparotto, Alberto ;
Carraro, Giorgio ;
Bigiani, Lorenzo ;
Altantzis, Thomas ;
Zener, Bostjan ;
Stangar, Urska Lavrencic ;
Alessi, Bruno ;
Padmanaban, Dilli Babu ;
Mariotti, Davide ;
Maccato, Chiara .
NANOSCALE, 2019, 11 (01) :98-108
[5]   Manganese(II) Molecular Sources for Plasma-Assisted CVD of Mn Oxides and Fluorides: From Precursors to Growth Process [J].
Barreca, Davide ;
Carraro, Giorgio ;
Fois, Ettore ;
Gasparotto, Alberto ;
Gri, Filippo ;
Seraglia, Roberta ;
Wilken, Martin ;
Venzo, Alfonso ;
Devi, Anjana ;
Tabacchi, Gloria ;
Maccato, Chiara .
JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (02) :1367-1375
[6]   Columnar Fe2O3 arrays via plasma-enhanced growth: Interplay of fluorine substitution and photoelectrochemical properties [J].
Barreca, Davide ;
Carraro, Giorgio ;
Gasparotto, Alberto ;
Maccato, Chiara ;
Sada, Cinzia ;
Singh, Aadesh P. ;
Mathur, Sanjay ;
Mettenboerger, Andreas ;
Bontempi, Elza ;
Depero, Laura E. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (33) :14189-14199
[7]   Potential applications of hierarchical branching nanowires in solar energy conversion [J].
Bierman, Matthew J. ;
Jin, Song .
ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (10) :1050-1059
[8]   Engineering Au/MnO2hierarchical nanoarchitectures for ethanol electrochemical valorization [J].
Bigiani, Lorenzo ;
Andreu, Teresa ;
Maccato, Chiara ;
Fois, Ettore ;
Gasparotto, Alberto ;
Sada, Cinzia ;
Tabacchi, Gloria ;
Krishnan, Dileep ;
Verbeeck, Johan ;
Ramon Morante, Juan ;
Barreca, Davide .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (33) :16902-16907
[9]   Quasi-1D MnO2 nanocomposites as gas sensors for hazardous chemicals [J].
Bigiani, Lorenzo ;
Zappa, Dario ;
Maccato, Chiara ;
Comini, Elisabetta ;
Barreca, Davide ;
Gasparotto, Alberto .
APPLIED SURFACE SCIENCE, 2020, 512
[10]   Manganese Oxide Nanoarchitectures as Chemoresistive Gas Sensors to Monitor Fruit Ripening [J].
Bigiani, Lorenzo ;
Zappa, Dario ;
Comini, Elisabetta ;
Maccato, Chiara ;
Gasparotto, Alberto ;
Barreca, Davide .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2020, 20 (05) :3025-3030