Willmore 2-Spheres in Sn: A Survey

被引:0
作者
Ma, Xiang [1 ]
Wang, Peng [2 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] Tongji Univ, Dept Math, Siping Rd 1239, Shanghai 200092, Peoples R China
来源
GEOMETRY AND TOPOLOGY OF MANIFOLDS | 2016年 / 154卷
关键词
Willmore surface; Adjoint transform; Minimal surface; Harmonic map; Loop group; HARMONIC MAPS; SURFACES; DUALITY;
D O I
10.1007/978-4-431-56021-0_12
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an overview of the classification problem of Willmore 2-spheres in S-n, and report the recent progress on this problem when n = 5 ( or even higher). We explain two main ingredients in our work. The first is the adjoint transform of Willmore surfaces introduced by the first author, which generalizes the dual Willmore surface construction. The second is the DPW method applied to Willmore surfaces whose conformal Gaussmap is well-known to be a harmonic map into a non-compact symmetric space (a joint work of Dorfmeister and the second author). We also sketch a possible way to classify all Willmore 2-spheres in S-n.
引用
收藏
页码:211 / 233
页数:23
相关论文
共 45 条
[1]  
Alias LJ, 1996, GEOMETRIAE DEDICATA, V60, P301
[2]  
[Anonymous], CONT MATH, DOI DOI 10.1090/CONM/308/05311
[3]  
[Anonymous], 2002, CONTEMP MATH-SINGAP
[4]  
Bauer M, 2003, INT MATH RES NOTICES, V2003, P553
[5]  
Blaschke W., 1929, Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen
[6]   Conformal maps from a 2-torus to the 4-sphere [J].
Bohle, Christoph ;
Leschke, Katrin ;
Pedit, Franz ;
Pinkall, Ulrich .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2012, 671 :1-30
[7]  
Brander D., ARXIV14093953
[8]  
Bryant R.L., 1988, P S PURE MATH, P227
[9]  
BRYANT RL, 1984, J DIFFER GEOM, V20, P23
[10]  
Burstall F., GAUGE THEORETU UNPUB