Mechanisms of cell migration in the adult brain: modelling subventricular neurogenesis

被引:2
作者
Van Schepdael, A. [1 ,2 ]
Ashbourn, J. M. A. [3 ]
Beard, R. [4 ]
Miller, J. J. [5 ]
Geris, L. [1 ,6 ]
机构
[1] Univ Liege, Biomech Res Unit, Liege, Belgium
[2] Katholieke Univ Leuven, Biomech Sect, Louvain, Belgium
[3] Univ Oxford, Dept Engn Sci, Oxford OX1 3PJ, England
[4] Univ Oxford Exeter Coll, Oxford OX1 3DP, England
[5] Univ Oxford, St Hughs Coll, Oxford, England
[6] Katholieke Univ Leuven, Div Skeletal Tissue Engn, Prometheus, Louvain, Belgium
基金
欧洲研究理事会;
关键词
neurogenesis; mathematical model; cell migration; NEURONAL MIGRATION; MAMMALIAN FOREBRAIN; SYSTEMS BIOLOGY; OLFACTORY-BULB; PRECURSORS; ZONE; PROLIFERATION; NETRIN-1; STREAM; SLIT;
D O I
10.1080/10255842.2013.773979
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Neurogenesis has been the subject of active research in recent years. Although the majority of neurons form during the embryonic period, neurogenesis continues in restricted regions of the mammalian brain well into adulthood. In rodent brains, neuronal migration is present in the rostral migratory stream (RMS), connecting the subventricular zone to the olfactory bulb (OB). The migration in the RMS is characterised by a lack of dispersion of neuroblasts into the surrounding tissues and a highly directed motion towards the OB. This study uses a simple mathematical model to investigate several theories of migration of neuroblasts through the RMS proposed in the literature, including chemo-attraction, chemorepulsion, general inhibition and the presence of a migration-inducing protein. Apart from the general inhibition model, all the models were able to provide results in good qualitative correspondence with the experimental observations.
引用
收藏
页码:1096 / 1105
页数:10
相关论文
共 26 条
[1]  
Alcántara S, 2000, DEVELOPMENT, V127, P1359
[2]   A mathematical model of adult subventricular neurogenesis [J].
Ashbourn, J. M. A. ;
Miller, J. J. ;
Reumers, V. ;
Baekelandt, V. ;
Geris, L. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2012, 9 (75) :2414-2423
[3]   Analysis of neurogenesis and programmed cell death reveals a self-renewing capacity in the adult rat brain [J].
Biebl, M ;
Cooper, CM ;
Winkler, J ;
Kuhn, HG .
NEUROSCIENCE LETTERS, 2000, 291 (01) :17-20
[4]  
Bloch-Gallego E, 1999, J NEUROSCI, V19, P4407
[5]   Sloppiness, robustness, and evolvability in systems biology [J].
Daniels, Bryan C. ;
Chen, Yan-Jiun ;
Sethna, James P. ;
Gutenkunst, Ryan N. ;
Myers, Christopher R. .
CURRENT OPINION IN BIOTECHNOLOGY, 2008, 19 (04) :389-395
[6]   Angiogenesis in bone fracture healing: A bioregulatory model [J].
Geris, Liesbet ;
Gerisch, Alf ;
Sloten, Jos Vander ;
Weiner, Ruediger ;
Van Oosterwyck, Hans .
JOURNAL OF THEORETICAL BIOLOGY, 2008, 251 (01) :137-158
[7]   Robust numerical methods for taxis-diffusion-reaction systems: Applications to biomedical problems [J].
Gerisch, A ;
Chaplain, MAJ .
MATHEMATICAL AND COMPUTER MODELLING, 2006, 43 (1-2) :49-75
[8]   Neuronal migration in the adult brain: are we there yet? [J].
Ghashghaei, H. Troy ;
Lai, Cary ;
Anton, E. S. .
NATURE REVIEWS NEUROSCIENCE, 2007, 8 (02) :141-151
[9]   Universally sloppy parameter sensitivities in systems biology models [J].
Gutenkunst, Ryan N. ;
Waterfall, Joshua J. ;
Casey, Fergal P. ;
Brown, Kevin S. ;
Myers, Christopher R. ;
Sethna, James P. .
PLOS COMPUTATIONAL BIOLOGY, 2007, 3 (10) :1871-1878
[10]   Extracting falsifiable predictions from sloppy models [J].
Gutenkunst, Ryan N. ;
Casey, Fergal P. ;
Waterfall, Joshua J. ;
Myers, Christopher R. ;
Sethna, James P. .
REVERSE ENGINEERING BIOLOGICAL NETWORKS: OPPORTUNITIES AND CHALLENGES IN COMPUTATIONAL METHODS FOR PATHWAY INFERENCE, 2007, 1115 :203-211