Thermoelectric response of a correlated impurity in the nonequilibrium Kondo regime

被引:24
作者
Dorda, Antonius [1 ]
Ganahl, Martin [2 ]
Andergassen, Sabine [3 ,4 ]
von der Linden, Wolfgang [1 ]
Arrigoni, Enrico [1 ]
机构
[1] Graz Univ Technol, Inst Theoret & Computat Phys, A-8010 Graz, Austria
[2] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[3] Univ Tubingen, Inst Theoret Phys, Morgenstelle 14, D-72076 Tubingen, Germany
[4] Univ Tubingen, Ctr Quantum Sci, Morgenstelle 14, D-72076 Tubingen, Germany
基金
奥地利科学基金会;
关键词
SINGLE-MOLECULE JUNCTIONS; QUANTUM-DOT; RENORMALIZATION-GROUP; CARBON NANOTUBES; ULTRACOLD ATOMS; ANDERSON MODEL; TRANSPORT; SPIN; THERMOPOWER; ELECTRONICS;
D O I
10.1103/PhysRevB.94.245125
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study nonequilibrium thermoelectric transport properties of a correlated impurity connected to two leads for temperatures below the Kondo scale. At finite bias, for which a current flows across the leads, we investigate the differential response of the current to a temperature gradient. In particular, we compare the influence of a bias voltage and of a finite temperature on this thermoelectric response. This is of interest from a fundamental point of view to better understand the two different decoherence mechanisms produced by a bias voltage and by temperature. Our results show that in this respect the thermoelectric response behaves differently from the electric conductance. In particular, while the latter displays a similar qualitative behavior as a function of voltage and temperature, both in theoretical and experimental investigations, qualitative differences occur in the case of the thermoelectric response. In order to understand this effect, we analyze the different contributions in connection to the behavior of the impurity spectral function versus temperature. Especially in the regime of strong interactions and large enough bias voltages, we obtain a simple picture based on the asymmetric suppression or enhancement of the split Kondo peaks as a function of the temperature gradient. Besides the academic interest, these studies could additionally provide valuable information to assess the applicability of quantum dot devices as responsive nanoscale temperature sensors.
引用
收藏
页数:10
相关论文
共 133 条
[51]   Pumping of Vibrational Excitations in the Coulomb-Blockade Regime in a Suspended Carbon Nanotube [J].
Huttel, A. K. ;
Witkamp, B. ;
Leijnse, M. ;
Wegewijs, M. R. ;
van der Zant, H. S. J. .
PHYSICAL REVIEW LETTERS, 2009, 102 (22)
[52]   Nonequilibrium functional renormalization group with frequency-dependent vertex function: A study of the single-impurity Anderson model [J].
Jakobs, Severin G. ;
Pletyukhov, Mikhail ;
Schoeller, Herbert .
PHYSICAL REVIEW B, 2010, 81 (19)
[53]   Gate-dependent spin-orbit coupling in multielectron carbon nanotubes [J].
Jespersen, T. S. ;
Grove-Rasmussen, K. ;
Paaske, J. ;
Muraki, K. ;
Fujisawa, T. ;
Nygard, J. ;
Flensberg, K. .
NATURE PHYSICS, 2011, 7 (04) :348-353
[54]   Electronics using hybrid-molecular and mono-molecular devices [J].
Joachim, C ;
Gimzewski, JK ;
Aviram, A .
NATURE, 2000, 408 (6812) :541-548
[55]   Influence of vibrational modes on quantum transport through a nanodevice [J].
Jovchev, Andre ;
Anders, Frithjof B. .
PHYSICAL REVIEW B, 2013, 87 (19)
[56]  
Jung C, 2012, ANN PHYS-BERLIN, V524, P49, DOI 10.1002/andp.201100045
[57]  
Kadanoff L., 1962, QUANTUM STAT MECH GR
[58]   Scaling and decoherence in the nonequilibrium Kondo model [J].
Kehrein, S .
PHYSICAL REVIEW LETTERS, 2005, 95 (05)
[59]  
KELDYSH LV, 1965, SOV PHYS JETP-USSR, V20, P1018
[60]   Efficiency and power of a thermoelectric quantum dot device [J].
Kennes, D. M. ;
Schuricht, D. ;
Meden, V. .
EPL, 2013, 102 (05)