Stability of standing waves for the L 2-critical Hartree equations with harmonic potential

被引:8
作者
Huang, Juan [1 ,2 ]
Zhang, Jian [1 ,2 ]
Li, Xiaoguang [1 ,3 ]
机构
[1] Sichuan Normal Univ, Visual Comp & Virtual Real Key Lab Sichuan Prov, Chengdu 610066, Peoples R China
[2] Sichuan Normal Univ, Coll Math & Software Sci, Chengdu 610066, Peoples R China
[3] Sichuan Normal Univ, Coll Econ & Management Sci, Chengdu 610066, Peoples R China
基金
美国国家科学基金会;
关键词
Hartree equations; harmonic potential; standing waves; stability; NONLINEAR SCHRODINGER; STRONG INSTABILITY;
D O I
10.1080/00036811.2012.716512
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article is concerned with the Hartree equations with harmonic potential. By an elaborate mathematical analysis, we obtain a sharp stability threshold of this equation. Then with this threshold, we prove that the standing wave of this equation exists and is stable.
引用
收藏
页码:2076 / 2083
页数:8
相关论文
共 17 条
[1]  
BERESTYCKI H, 1981, CR ACAD SCI I-MATH, V293, P489
[2]  
Bona J, 2002, DISCRETE CONT DYN-B, V2, P313
[3]   ORBITAL STABILITY OF STANDING WAVES FOR SOME NON-LINEAR SCHRODING EQUATIONS [J].
CAZENAVE, T ;
LIONS, PL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 85 (04) :549-561
[4]  
Cazenave T, 2003, Semilinear Schrodinger Equations
[5]   Strong instability of standing waves for a nonlocal Schrodinger equation [J].
Chen, Jianqing ;
Guo, Boling .
PHYSICA D-NONLINEAR PHENOMENA, 2007, 227 (02) :142-148
[6]  
Datchev K, 2009, SOLITARY WAVES HARTR
[7]  
Fruhlich J, 2004, SMIN EQNS DERIV PART, VXIX, P1
[8]   Stability and instability of standing waves for the nonlinear Schrodinger equation with harmonic potential [J].
Fukuizumi, R .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2001, 7 (03) :525-544
[9]  
Fukuizumi R., 2003, Differential Integral Equations, V16, P111
[10]  
Fukuizumi R., 2003, Differ. Integral Equ, V16, P691