Morphological autoencoders for apnea detection in respiratory gating radiotherapy

被引:1
作者
Abreu, Mariana [1 ,2 ]
Fred, Ana [1 ,2 ]
Valente, Joao [3 ]
Wang, Chen [4 ]
da Silva, Hugo Placido [1 ,2 ]
机构
[1] Inst Super Tecn, P-1049001 Lisbon, Portugal
[2] Inst Telecomunicacoes, P-1049001 Lisbon, Portugal
[3] Inst Politecn Castelo Branco, P-6000084 Castelo Branco, Portugal
[4] Xinhua Net, Beijing 100031, Peoples R China
关键词
Artificialneuralnetworks; Respiratorygating; Apneadetection; Machinelearning; Signalprocessing; DEEP INSPIRATION; ABC;
D O I
10.1016/j.cmpb.2020.105675
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Background and Objective: Respiratory gating training is a common technique to increase patient proprioception, with the goal of (e.g.) minimizing the effects of organ motion during radiotherapy. In this work, we devise a system based on autoencoders for classification of regular, apnea and unconstrained breathing patterns (i.e. multiclass). Methods: Our approach is based on morphological analysis of the respiratory signals, using an autoencoder trained on regular breathing. The correlation between the input and output of the autoencoder is used to train and test several classifiers in order to select the best. Our approach is evaluated in a novel real-world respiratory gating biofeedback training dataset and on the Apnea-ECG reference dataset. Results: Accuracies of 95 +/- 3.5% and 87 +/- 6.6% were obtained for two different datasets, in the classification of breathing and apnea. These results suggest the viability of a generalised model to characterise the breathing patterns under study. Conclusions: Using autoencoders to learn respiratory gating training patterns allows a data-driven approach to feature extraction, by focusing only on the signal's morphology. The proposed system is prone to be used in real-time and could potentially be transferred to other domains. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
[41]   Anomaly Detection in Fractal Time Series with LSTM Autoencoders [J].
Kirichenko, Lyudmyla ;
Koval, Yulia ;
Yakovlev, Sergiy ;
Chumachenko, Dmytro .
MATHEMATICS, 2024, 12 (19)
[42]   Evaluation of different respiratory gating schemes for cardiac SPECT [J].
Zhang, Duo ;
Pretorius, P. Hendrik ;
Ghaly, Michael ;
Zhang, Qi ;
King, Michael A. ;
Mok, Greta S. P. .
JOURNAL OF NUCLEAR CARDIOLOGY, 2020, 27 (02) :634-647
[43]   Unsupervised network traffic anomaly detection with deep autoencoders [J].
Dutta, Vibekananda ;
Pawlicki, Marek ;
Kozik, Rafal ;
Choras, Michal .
LOGIC JOURNAL OF THE IGPL, 2022, 30 (06) :912-925
[44]   Clinical evaluation of three respiratory gating schemes for different respiratory patterns on cardiac SPECT [J].
Zhang, Duo ;
Sun, Jingzhang ;
Pretorius, P. Hendrik ;
King, Michael ;
Mok, Greta S. P. .
MEDICAL PHYSICS, 2020, 47 (09) :4223-4232
[45]   Evaluation of the Accuracy of Liver Lesion DCEUS Quantification With Respiratory Gating [J].
Christofides, Damianos ;
Leen, Edward ;
Averkiou, Michalakis A. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (02) :622-629
[46]   A SIMPLE DEVICE FOR RESPIRATORY GATING FOR THE MRI OF LABORATORY-ANIMALS [J].
BURDETT, NG ;
CARPENTER, TA ;
HALL, LD .
MAGNETIC RESONANCE IMAGING, 1993, 11 (06) :897-901
[47]   Effect of respiratory gating on quantifying PET images of lung cancer [J].
Nehmeh, SA ;
Erdi, YE ;
Ling, CC ;
Rosenzweig, KE ;
Schoder, H ;
Larson, SM ;
Macapinlac, HA ;
Squire, OD ;
Humm, JL .
JOURNAL OF NUCLEAR MEDICINE, 2002, 43 (07) :876-881
[48]   List Mode-Driven Cardiac and Respiratory Gating in PET [J].
Buether, Florian ;
Dawood, Mohammad ;
Stegger, Lars ;
Wuebbeling, Frank ;
Schaefers, Michael ;
Schober, Otmar ;
Schaefers, Klaus P. .
JOURNAL OF NUCLEAR MEDICINE, 2009, 50 (05) :674-681
[49]   Systematic errors in respiratory gating due to intrafraction deformations of the liver [J].
von Siebenthal, Martin ;
Szekely, Gabor ;
Lomax, Antony J. ;
Cattin, Philippe C. .
MEDICAL PHYSICS, 2007, 34 (09) :3620-3629
[50]   Anomaly detection in gravitational waves data using convolutional autoencoders [J].
Morawski F. ;
Bejger M. ;
Cuoco E. ;
Petre L. .
Machine Learning: Science and Technology, 2021, 2 (04)