Morphological autoencoders for apnea detection in respiratory gating radiotherapy

被引:1
作者
Abreu, Mariana [1 ,2 ]
Fred, Ana [1 ,2 ]
Valente, Joao [3 ]
Wang, Chen [4 ]
da Silva, Hugo Placido [1 ,2 ]
机构
[1] Inst Super Tecn, P-1049001 Lisbon, Portugal
[2] Inst Telecomunicacoes, P-1049001 Lisbon, Portugal
[3] Inst Politecn Castelo Branco, P-6000084 Castelo Branco, Portugal
[4] Xinhua Net, Beijing 100031, Peoples R China
关键词
Artificialneuralnetworks; Respiratorygating; Apneadetection; Machinelearning; Signalprocessing; DEEP INSPIRATION; ABC;
D O I
10.1016/j.cmpb.2020.105675
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Background and Objective: Respiratory gating training is a common technique to increase patient proprioception, with the goal of (e.g.) minimizing the effects of organ motion during radiotherapy. In this work, we devise a system based on autoencoders for classification of regular, apnea and unconstrained breathing patterns (i.e. multiclass). Methods: Our approach is based on morphological analysis of the respiratory signals, using an autoencoder trained on regular breathing. The correlation between the input and output of the autoencoder is used to train and test several classifiers in order to select the best. Our approach is evaluated in a novel real-world respiratory gating biofeedback training dataset and on the Apnea-ECG reference dataset. Results: Accuracies of 95 +/- 3.5% and 87 +/- 6.6% were obtained for two different datasets, in the classification of breathing and apnea. These results suggest the viability of a generalised model to characterise the breathing patterns under study. Conclusions: Using autoencoders to learn respiratory gating training patterns allows a data-driven approach to feature extraction, by focusing only on the signal's morphology. The proposed system is prone to be used in real-time and could potentially be transferred to other domains. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
[21]   Patient's Perception of Care Quality During Radiotherapy Sessions Using Respiratory Gating Techniques: Validation of a Specific Questionnaire [J].
Bredart, A. ;
Morvan, E. ;
Savignoni, A. ;
Giraud, P. .
CANCER INVESTIGATION, 2011, 29 (02) :145-152
[22]   Automated Off-Line Respiratory Event Detection for the Study of Postoperative Apnea in Infants [J].
Aoude, Ahmed A. ;
Kearney, Robert E. ;
Brown, Karen A. ;
Galiana, Henrietta L. ;
Robles-Rubio, Carlos A. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2011, 58 (06) :1724-1733
[23]   Automatic respiratory gating for perfusion quantification of DCEUS [J].
Christofides, Damianos ;
Averkiou, Michalakis A. ;
Leen, Edward .
2013 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2013, :1146-1149
[24]   Dosimetry of a linear accelerator under respiratory gating [J].
Weibert, Kirsten ;
Biller, Sebastian ;
Wendt, Thomas Georg ;
Wiezorek, Tilo .
ZEITSCHRIFT FUR MEDIZINISCHE PHYSIK, 2009, 19 (02) :136-141
[25]   Unsupervised fault detection in refrigeration showcase with single class data using autoencoders [J].
Santana A. ;
Kawamura Y. ;
Murakami K. ;
Iizaka T. ;
Matsui T. ;
Fukuyama Y. .
IEEJ Transactions on Electronics, Information and Systems, 2019, 139 (10) :1191-1200
[26]   Anomaly Detection with Autoencoders for Spectrum Sharing and Monitoring [J].
Tschimben, Stefan ;
Gifford, Kevin .
2022 IEEE INTERNATIONAL WORKSHOP ON COMMUNICATIONS QUALITY AND RELIABILITY (IEEE CQR), 2022, :37-42
[27]   Self-Gating: An Adaptive Center-of-Mass Approach for Respiratory Gating in PET [J].
Feng, Tao ;
Wang, Jizhe ;
Sun, Youjun ;
Zhu, Wentao ;
Dong, Yun ;
Li, Hongdi .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (05) :1140-1148
[28]   Sleep Apnea Detection System Using Machine Learning on Resource-Constrained Devices [J].
Mallick, Sayani ;
Gawali, Shubhangi ;
Onime, Clement ;
Goveas, Neena .
2023 IEEE INTERNATIONAL SYSTEMS CONFERENCE, SYSCON, 2023,
[29]   Respiratory gated radiotherapy: the 4D radiotherapy [J].
Giraud, P ;
Simon, L ;
Saliou, M ;
Reboul, F ;
Garcia, R ;
Carrie, C ;
Lerolle, U ;
Rosenwald, JC ;
Cosset, JM .
BULLETIN DU CANCER, 2005, 92 (01) :83-89
[30]   Normal tissue sparing potential of scanned proton beams with and without respiratory gating for the treatment of internal mammary nodes in breast cancer radiotherapy [J].
Dasu, Alexandru ;
Flejmer, Anna M. ;
Edvardsson, Anneli ;
Nystrom, Petra Witt .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2018, 52 :81-85