Limit cycles of discontinuous piecewise polynomial vector fields

被引:8
|
作者
de Carvalho, Tiago [1 ]
Llibre, Jaume [2 ]
Tonon, Durval Jose [3 ]
机构
[1] UNESP, Fac Ciencias, Dept Matemat, Av Engn Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP, Brazil
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
[3] Univ Fed Goias, Inst Math & Stat, Ave Esperanca S-N,Campus Samambaia, BR-74690900 Goiania, Go, Brazil
基金
巴西圣保罗研究基金会;
关键词
Piecewise smooth vector fields; Limit cycle; Averaging theory; Cyclicity; LINEAR SYSTEMS; BIFURCATION; EXISTENCE; NUMBER;
D O I
10.1016/j.jmaa.2016.11.048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
When the first average function is non-zero we provide an upper bound for the maximum number of limit cycles bifurcating from the periodic solutions of the center (x) over dot = -y((x(2) + y(2))/2)(m) and (y) over dot = x((x(2) + y(2))/2)(m) with m >= 1, when we perturb it inside a class of discontinuous piecewise polynomial vector fields of degree n with k pieces. The positive integers m, n and k are arbitrary. The main tool used for proving our results is the averaging theory for discontinuous piecewise vector fields. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:572 / 579
页数:8
相关论文
共 50 条
  • [21] Limit cycles of discontinuous piecewise differential Hamiltonian systems separated by a circle, or a parabola, or a hyperbola
    Casimiro, Joyce A.
    Llibre, Jaume
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 225 : 303 - 312
  • [22] The limit cycles of a class of discontinuous piecewise differential systems
    Baymout, Louiza
    Benterki, Rebiha
    Llibre, Jaume
    INTERNATIONAL JOURNAL OF DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS, 2024, 13 (04) : 339 - 368
  • [23] Limit cycles for a class of discontinuous piecewise generalized Kukles differential systems
    Mereu, Ana C.
    Oliveira, Regilene
    Rodrigues, Camila A. B.
    NONLINEAR DYNAMICS, 2018, 93 (04) : 2201 - 2212
  • [24] Limit cycles by perturbing quadratic isochronous centers inside piecewise polynomial differential systems
    Cen, Xiuli
    Liu, Changjian
    Yang, Lijun
    Zhang, Meirong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (12) : 6083 - 6126
  • [25] Limit cycles of linear vector fields on manifolds
    Llibre, Jaume
    Zhang, Xiang
    NONLINEARITY, 2016, 29 (10) : 3120 - 3131
  • [26] UNIQUENESS OF LIMIT CYCLES FOR QUADRATIC VECTOR FIELDS
    Luis Bravo, Jose
    Fernandez, Manuel
    Ojeda, Ignacio
    Sanchez, Fernando
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (01) : 483 - 502
  • [27] POLYNOMIAL VECTOR FIELDS IN R3 WITH INFINITELY MANY LIMIT CYCLES
    Ferragut, Antoni
    Llibre, Jaume
    Pantazi, Chara
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (02):
  • [28] Bifurcation of limit cycles at infinity in piecewise polynomial systems
    Chen, Ting
    Huang, Lihong
    Yu, Pei
    Huang, Wentao
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 41 : 82 - 106
  • [29] Number of Limit Cycles from a Class of Perturbed Piecewise Polynomial Systems
    Chen, Xiaoyan
    Han, Maoan
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (09):
  • [30] LIMIT CYCLES FOR PIECEWISE SMOOTH PERTURBATIONS OF A CUBIC POLYNOMIAL DIFFERENTIAL CENTER
    Li, Shimin
    Huang, Tiren
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,