Limit cycles of discontinuous piecewise polynomial vector fields

被引:8
|
作者
de Carvalho, Tiago [1 ]
Llibre, Jaume [2 ]
Tonon, Durval Jose [3 ]
机构
[1] UNESP, Fac Ciencias, Dept Matemat, Av Engn Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP, Brazil
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
[3] Univ Fed Goias, Inst Math & Stat, Ave Esperanca S-N,Campus Samambaia, BR-74690900 Goiania, Go, Brazil
基金
巴西圣保罗研究基金会;
关键词
Piecewise smooth vector fields; Limit cycle; Averaging theory; Cyclicity; LINEAR SYSTEMS; BIFURCATION; EXISTENCE; NUMBER;
D O I
10.1016/j.jmaa.2016.11.048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
When the first average function is non-zero we provide an upper bound for the maximum number of limit cycles bifurcating from the periodic solutions of the center (x) over dot = -y((x(2) + y(2))/2)(m) and (y) over dot = x((x(2) + y(2))/2)(m) with m >= 1, when we perturb it inside a class of discontinuous piecewise polynomial vector fields of degree n with k pieces. The positive integers m, n and k are arbitrary. The main tool used for proving our results is the averaging theory for discontinuous piecewise vector fields. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:572 / 579
页数:8
相关论文
共 50 条
  • [1] On the limit cycles for a class of discontinuous piecewise cubic polynomial differential systems
    Huang, Bo
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2020, (25) : 1 - 24
  • [2] LIMIT CYCLES OF DISCONTINUOUS PIECEWISE QUADRATIC AND CUBIC POLYNOMIAL PERTURBATIONS OF A LINEAR CENTER
    Llibre, Jaume
    Tang, Yilei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (04): : 1769 - 1784
  • [3] Limit cycles in an m-piecewise discontinuous polynomial differential system
    Jiang, Ziguo
    AIMS MATHEMATICS, 2024, 9 (02): : 3613 - 3629
  • [4] Realization problems for limit cycles of planar polynomial vector fields
    Margalef-Bentabol, Juan
    Peralta-Salas, Daniel
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (04) : 3844 - 3859
  • [5] Bifurcation of Limit Cycles from the Center of a Family of Cubic Polynomial Vector Fields
    Sui, Shiyou
    Zhao, Liqin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (05):
  • [6] Limit Cycles for a Discontinuous Quintic Polynomial Differential System
    Huang, Bo
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2019, 18 (03) : 769 - 792
  • [7] THE LIMIT CYCLES OF A CLASS OF QUINTIC POLYNOMIAL VECTOR FIELDS
    Llibre, Jaume
    Salhi, Tayeb
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2019, 54 (01) : 141 - 151
  • [8] Limit Cycles and Bifurcations in a Class of Discontinuous Piecewise Linear Systems
    Li, Tao
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (10):
  • [9] ON THE LIMIT CYCLES OF PLANAR DISCONTINUOUS PIECEWISE LINEAR DIFFERENTIAL SYSTEMS WITH A UNIQUE EQUILIBRIUM
    Li, Shimin
    Llibre, Jaume
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (11): : 5885 - 5901
  • [10] Limit cycles, invariant meridians and parallels for polynomial vector fields on the torus
    Llibre, Jaume
    Medrado, Joao C.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2011, 135 (01): : 1 - 9