An Empirical Study of Reward Structures for Actor-Critic Reinforcement Learning in Air Combat Manoeuvring Simulation

被引:13
作者
Kurniawan, Budi [1 ]
Vamplew, Peter [1 ]
Papasimeon, Michael [2 ]
Dazeley, Richard [3 ]
Foale, Cameron [1 ]
机构
[1] Federation Univ, Mt Helen, Vic 3350, Australia
[2] Def Sci & Technol Grp, Fishermans Bend, Vic 3207, Australia
[3] Deakin Univ, Sch Informat Technol, Geelong, Vic 3220, Australia
来源
AI 2019: ADVANCES IN ARTIFICIAL INTELLIGENCE | 2019年 / 11919卷
关键词
Reinforcement learning; Actor-critic; Air combat; GAME;
D O I
10.1007/978-3-030-35288-2_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Reinforcement learning techniques for solving complex problems are resource-intensive and take a long time to converge, prompting a need for methods that encourage faster learning. In this paper we show our successful application of actor-critic reinforcement learning to the air combat simulation domain and how reward structures affect the learning speed to find effective air combat tactics.
引用
收藏
页码:54 / 65
页数:12
相关论文
共 29 条
[1]  
Alford R., 2015, P 3 ANN C ADV COGN S
[2]   NEURONLIKE ADAPTIVE ELEMENTS THAT CAN SOLVE DIFFICULT LEARNING CONTROL-PROBLEMS [J].
BARTO, AG ;
SUTTON, RS ;
ANDERSON, CW .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1983, 13 (05) :834-846
[3]  
Bengio Y., 2009, P 26 ANN INT C MACH, P41, DOI [DOI 10.1145/1553374.1553380.EVENT-PLACE, 10.1145/1553374.1553380, DOI 10.1145/1553374.15533802,5]
[4]  
Fang Jun, 2017, DESTECH T ENG TECHNO
[5]  
Floyd MW, 2017, PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P4714
[6]  
Grzes M, 2009, LECT NOTES COMPUT SC, V5495, P360, DOI 10.1007/978-3-642-04921-7_37
[7]  
Heinze C, 2008, WHITESTEIN SER SOFTW, P113, DOI 10.1007/978-3-7643-8571-2_7
[8]  
Lee D, 2013, ADV INTELL SYST, V193, P533
[9]  
Liu P., 2017, Communications in Computer and Information Science, P274, DOI DOI 10.1007/978-981-10-6463-024
[10]  
Masek Martin, 2018, PRIMA 2018: Principles and Practice of Multi-Agent Systems. 21st International Conference. Proceedings: Lecture Notes in Artificial Intelligence (LNAI 11224), P19, DOI 10.1007/978-3-030-03098-8_2